Environmental Earth Sciences

, Volume 64, Issue 3, pp 607–617 | Cite as

Mass fluxes of xenobiotics below cities: challenges in urban hydrogeology

  • Mario Schirmer
  • Frido Reinstorf
  • Sebastian Leschik
  • Andreas Musolff
  • Ronald Krieg
  • Gerhard Strauch
  • John W. Molson
  • Marion Martienssen
  • Kristin Schirmer
Original Article

Abstract

Urban areas are the focus of major ecological, social and economical activity. They are thus also prime locations of increasing conflict with regard to water use and water protection. As a direct and/or indirect consequence of urban land use and human activity, urban water systems are frequently polluted with organic contaminants including waste water-born xenobiotics such as pharmaceuticals, personal care products (collectively known as PPCPs) and endocrine-active substances. This study reviews new integrated methodologies including flux calculations as well as chemical investigations for determining the impact of human activities on urban water systems and on processes within the urban watershed. The use of indicator substances, representing different contaminant sources and pathways, integral pumping tests and mass balance approaches are suitable alternatives within these environments. The issues are explored using contaminant mass balance examples from Halle/Saale and Leipzig, Germany.

Keywords

Leaky sewers Mass balance Micropollutants PPCP Urban groundwater Urban hydrogeology 

References

  1. Bachhausen P, Buchholz N, Hartkamp H (1985) Determination of nitrate by means of cromotropic acid. Fresenius Z. Anal. Chem. 320:490–493CrossRefGoogle Scholar
  2. Bauer S, Bayer-Raich M, Holder T, Kolesar C, Müller D, Ptak T (2004) Quantification of groundwater contamination in an urban area using integral pumping tests. J Contam Hydrol 75:183–213CrossRefGoogle Scholar
  3. Bayer-Raich M, Jarsjö J, Liedl R, Ptak T, Teutsch G (2004) Average contaminant concentration and mass flow in aquifers from time-dependent pumping well data: analytical framework. Water Resour Res 40:W08303CrossRefGoogle Scholar
  4. Bopp SK, MacLachlan MS, Schirmer K (2007) Passive sampler for combined chemical and biological long-term monitoring of groundwater—the Ceramic Toximeter. Environ Sci Technol 41(19):6868–6876CrossRefGoogle Scholar
  5. Buerge IJ, Poiger T, Müller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37(4):691–700CrossRefGoogle Scholar
  6. Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38(4):947–954CrossRefGoogle Scholar
  7. DVWK (1997) Tiefenorientierte Probennahme aus Grundwassermessstellen. DVWK-Merkblatt 245 Wirtschafts- und Verlag-Gesellschaft Gas und Wasser, BonnGoogle Scholar
  8. Ellis JB, Revitt DM (2002) Sewer losses and interactions with groundwater quality. Water Sci Technol 45:195–202Google Scholar
  9. Grischek T, Nestler W, Piechniczek D, Fischer T (1996) Urban groundwater in Dresden, Germany. Hydrogeol J 4:48–63CrossRefGoogle Scholar
  10. Hatfield K, Annable M, Cho J, Rao PSC, Klammler H (2004) A direct passive method for measuring water and contaminant fluxes in porous media. J Contam Hydrol 75:155–181CrossRefGoogle Scholar
  11. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189CrossRefGoogle Scholar
  12. Heidrich S, Schirmer M, Weiss H, Wycisk P, Grossmann J, Kaschl A (2004) Regionally contaminated aquifers—toxicological relevance and remediation options (Bitterfeld case study). Toxicolology 205:143–155CrossRefGoogle Scholar
  13. Kennedy CA, Cuddihy J, Engel Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59CrossRefGoogle Scholar
  14. Kübert M, Finkel M (2006) Contaminant mass discharge estimation in groundwater based on multi-level point measurements: a numerical evaluation of expected errors. J Contam Hydrol 84(1–2):55–80CrossRefGoogle Scholar
  15. Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10:143–152CrossRefGoogle Scholar
  16. Leschik S, Musolff A, Martienssen M, Krieg R, Bayer-Raich M, Reinstorf F, Strauch G, Schirmer M (2009a) Investigation of sewer exfiltration using integral pumping tests and wastewater indicators. J Contam Hydrol 110(3–4):118–129CrossRefGoogle Scholar
  17. Leschik S, Musolff A, Krieg R, Martienssen M, Bayer-Raich M, Reinstorf F, Strauch G, Schirmer M (2009b) Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality. Hydrol Earth Syst Sci 13(10):1765–1774CrossRefGoogle Scholar
  18. Luckenbach T, Epel D (2005) Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters. Environ Health Perspect 113(1):17–24CrossRefGoogle Scholar
  19. Martienssen M, Fabritius H, Kukla S, Balcke GU, Hasselwander E, Schirmer M (2006) Determination of natural occurring MTBE biodegradation by analysing metabolites and biodegradation products. J Contam Hydrol 87(3–4):37–53CrossRefGoogle Scholar
  20. Martin H, Patterson BM, Davis GB, Grathwohl P (2003) Comparative field trial of time-integrated aqueous contaminant monitoring with ceramic dosimeters and conventional water sampling. Environ Sci Technol 37:1360–1364CrossRefGoogle Scholar
  21. Massmann G, Greskowiak J, Dünnbier U, Zuehlke S, Knappe A, Pekdeger A (2006) The impact of variable temperatures on the redox conditions and the behaviour of pharmaceutical residues during artificial recharge. J Hydrol 328:141–156CrossRefGoogle Scholar
  22. Massmann G, Sültenfuss J, Dünnbier U, Knappe A, Taute T, Pekdeger A (2008) Investigation of groundwater a residence times during bank filtration in Berlin: multi-tracer approach. Hydrol Process 22(6):788–801CrossRefGoogle Scholar
  23. Musolff A (2009) Micropollutants—challenges in hydrogeology. Hydrogeol J 14(4):763–766CrossRefGoogle Scholar
  24. Musolff A, Leschik S, Reinstorf F, Strauch G, Möder M, Schirmer M (2007) Xenobiotika im Grundwasser und Oberflächenwasser der Stadt Leipzig (Xenobiotics in groundwater and surface water in the city of Leipzig). Grundwasser 12(3):217–231CrossRefGoogle Scholar
  25. Musolff A, Leschik S, Möder M, Strauch G, Reinstorf F, Schirmer M (2009) Temporal and spatial patterns of micropollutants in urban receiving waters. Env Pollut 157(11):3069–3077CrossRefGoogle Scholar
  26. Musolff A, Leschik S, Schafmeister M-T, Reinstorf F, Strauch G, Krieg R, Schirmer M (2010a) Evaluation of xenobiotic impact on urban receiving waters by means of statistical methods. Water Sci Technol 62(3):684–692CrossRefGoogle Scholar
  27. Musolff A, Leschik S, Reinstorf F, Strauch G, Schirmer M (2010b) Micropollutant loads in the urban water cycle. Environ Sci Technol 44(13):4877–4883CrossRefGoogle Scholar
  28. Ort C, Gujer W (2008) Sorption and high dynamics of micropollutants in sewers. Water Sci Technol 57(11):1791–1797CrossRefGoogle Scholar
  29. Osenbrück K, Gläser H-R, Knöller K, Möder M, Wennrich R, Busch W, Reinstorf F, Schirmer M, Strauch G, Weise SM (2007) Source, transport and fate of organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany. Water Res 41(15):3259–3270CrossRefGoogle Scholar
  30. Rein A, Bauer S, Dietrich P, Beyer C (2009) Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. J Contam Hydrol 108(3–4):118–133CrossRefGoogle Scholar
  31. Reinstorf F, Strauch G, Schirmer K, Gläser H-R, Möder M, Wennrich R, Osenbrück K, Schirmer M (2008) Mass fluxes and spatial trends of xenobiotics in the waters of the city of Halle, Germany. Environ Pollut 152(2):452–460CrossRefGoogle Scholar
  32. Rutsch M, Rieckermann J, Krebs P (2006) Quantification of sewer leakage: a review. Water Sci Technol 54(6–7):135–144Google Scholar
  33. Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatogr A 938:199–210CrossRefGoogle Scholar
  34. Schirmer K, Schirmer M (2008) Who is chasing whom? A call for a more integrated approach to reduce the load of micro-pollutants in the environment. Water Sci Technol 57(1):145–150CrossRefGoogle Scholar
  35. Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiß H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328(3–4):393–407CrossRefGoogle Scholar
  36. Schirmer M, Strauch G, Schirmer K, Reinstorf F (2007) Urbane Hydrogeologie—Herausforderungen für Forschung und Praxis (Urban hydrogeology—challenges for research and practice). Grundwasser 12(3):178–188CrossRefGoogle Scholar
  37. Schmitt-Jansen M, Bartels P, Adler N, Altenburger R (2007) Phytotoxicity assessment of diclofenac and its phototransformation products. Anal Bioanal Chem 387(4):1389–1396CrossRefGoogle Scholar
  38. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  39. Strauch G, Möder M, Wennrich R, Osenbrück K, Gläser H-R, Schladitz T, Müller C, Schirmer K, Reinstorf F, Schirmer M (2008) Indicators for assessing anthropogenic impact on urban surface and groundwater. J Soil Sediments 8(1):23–33CrossRefGoogle Scholar
  40. Stuer-Lauridsen F (2005) Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut 136:503–524CrossRefGoogle Scholar
  41. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260CrossRefGoogle Scholar
  42. UN (2004) World Urbanization Prospects—the 2003 revision. United Nations, New YorkGoogle Scholar
  43. Wolf L, Morris B, Burn S (eds.) (2006) Urban water Resources Toolbox—integrating groundwater into urban water management. IWA Publishing, ISBN 1843391384Google Scholar
  44. Ying G-G, Tozeb S, Hannab J, Yua X-Y, Dillona PJ, Kookanaa RS (2008) Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater. Water Res 42:1133–1141CrossRefGoogle Scholar
  45. Zhang L, Kennedy C (2006) Determination of sustainable yield in urban groundwater systems: Beijing, China. J Hydrol Eng 11(1):21–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mario Schirmer
    • 1
  • Frido Reinstorf
    • 2
  • Sebastian Leschik
    • 3
  • Andreas Musolff
    • 4
  • Ronald Krieg
    • 5
  • Gerhard Strauch
    • 4
  • John W. Molson
    • 6
  • Marion Martienssen
    • 7
  • Kristin Schirmer
    • 8
  1. 1.Department of Water Resources and Drinking WaterEawag, Swiss Federal Institute of Aquatic Science and TechnologyDuebendorfSwitzerland
  2. 2.Department of Water and Waste ManagementUniversity of Applied Sciences Magdeburg-StendalMagdeburgGermany
  3. 3.Department of Groundwater RemediationUFZ, Helmholtz Centre for Environmental ResearchLeipzigGermany
  4. 4.Department of HydrogeologyUFZ, Helmholtz Centre for Environmental ResearchLeipzigGermany
  5. 5.Department of HydrogeologyUFZ, Helmholtz Centre for Environmental ResearchHalle/SaaleGermany
  6. 6.Department of Geology and Geological EngineeringLaval UniversityQuebec CityCanada
  7. 7.Chair Biotechnology of Water Treatment, Institute for Environmental TechnologyBrandenburg University of Technology CottbusCottbusGermany
  8. 8.Department of Environmental ToxicologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDuebendorfSwitzerland

Personalised recommendations