Advertisement

Environmental Earth Sciences

, Volume 63, Issue 6, pp 1355–1368 | Cite as

Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach

  • Younes Hamed
  • Lassaad DassiEmail author
  • Meriem Tarki
  • Riadh Ahmadi
  • Khalid Mehdi
  • Hamed Ben Dhia
Original Article

Abstract

Major ion geochemistry and environmental isotopes were used to identify the origins and the mineralisation processes of groundwater flowing within the three aquifer levels of the multilayer system of the Gafsa-south mining district (Southwestern Tunisia). It has been demonstrated that groundwaters are characterised by a Ca–Mg–SO4 water type. Geochemical pattern is mainly controlled by the dissolution of halite, gypsum and/or anhydrite as well as by the incongruent dissolution of dolomite. δ18O and δ2H values are much lower than the isotopic signature of regional precipitation and fall close to the meteoric water lines, indicating that groundwaters have not been significantly affected by evaporation or mineral–water reactions. The distribution of stable and radiogenic isotopes (δ18O, δ2H, δ13C and 14C) within the aquifer levels suggests that the deep confined aquifer receives a significant modern recharge at higher altitudes, while, the shallow unconfined aquifer has been mainly recharged under cooler paleoclimatic condition, likely during Late Pleistocene and Early Holocene humid periods. However, waters from the intermediate confined/unconfined aquifer have composite isotopic signatures, highlighting that they are derived from a mixture of the two first end-members.

Keywords

Major ion geochemistry Environmental isotopes Multilayer aquifer system Tunisia 

References

  1. Ahmadi R (2006) Utilisation des marqueurs morphologiques, sédimentologiques et microstructuraux pour la validation des modèles cinématiques de plissement. Application à l’Atlas méridional tunisien. Ph.D. Thesis, University of Nantes, France, pp 200Google Scholar
  2. Ahmadi R, Ouali J, Mercier E, Van-Vliet Lanöe B, Mansy JL, Rekhiss F (2006) The geomorphologic hallmarks of hinge migration in the Fault related folds: a study case in Southern Tunisian Atlas. J Struct Geol 28:721–728CrossRefGoogle Scholar
  3. Allison GB (1982) The relationship between 18O and deuterium in water and in sand columns undergoing evaporation. J Hydrol 76:1–25CrossRefGoogle Scholar
  4. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA-AWWA-WET, Washington, DCGoogle Scholar
  5. Banner JL, Wasserburg GJ, Dobson PF, Carpenter AB, Moore CH (1989) Isotopic and trace-element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochim Cosmochim Acta 53:383–398CrossRefGoogle Scholar
  6. Barth SR (2000) Stable isotope geochemistry of sediment-hosted groundwater from a Late Paleozoic–Early Mesozoic section in central Europe. J Hydrol 235:72–87CrossRefGoogle Scholar
  7. Ben Moussa A, Zouari K, Oueslati N (2009) Geochemical study of groundwater mineralization in the Grombalia shallow aquifer, north-eastern Tunisia: implication of irrigation and industrial waste water accounting. Environ Geol 58:555–567CrossRefGoogle Scholar
  8. Boaretto E, Thorling L, Sveinbjornsdottir AE, Yechieli Y, Heinemeier J (1998) Study of the effect of fossil organic carbon on 14C in groundwater from Hvinningdal, Denmark. Radiocarbon 40:915–920Google Scholar
  9. Boujlel B, Hamed H, Slimene F, Ben Ali R, Belhammami K, Hamed Y, Ben Dhia H (2008) Evolution of research activities of Gafsa phosphate company. In: 22nd Colloquim of African Geology and 13th conference of Geological Society of Africa Hammamet, Tunisia, 2008, pp 4–6Google Scholar
  10. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie Centrale. Ann Mines Geol 18:345Google Scholar
  11. Chadha DK (1999) A new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439CrossRefGoogle Scholar
  12. Chaieb M, Boukhriss M (1998) Flore suscinte et illustrée des zones arides et sahariennes de Tunisie. APNES, Tunis, p 29Google Scholar
  13. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, p 328Google Scholar
  14. Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  15. CPG-GCT (2009) Tunisian phosphate industry. Accessible at: http://www.gct.com.tn/francais/secteur.htm
  16. Craig H (1961) Isotopic variations in meteoric water. Science 133:1702–1703CrossRefGoogle Scholar
  17. Dassi L, Zouari K, Faye S (2004) Identifying sources of groundwater recharge in the Merguellil basin (Tunisia) using isotopic methods: implication of dam reservoir water accounting. Environ Geol 49:114–123CrossRefGoogle Scholar
  18. Dassi L, Zouari K, Seiler KP, Faye S, Kamel S (2005) Flow exchange between the deep and shallow groundwaters in the Sbeïtla synclinal basin (Tunisia): an isotopic approach. Environ Geol 47:501–511CrossRefGoogle Scholar
  19. Deines P (1980) The terrestrial environment. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. Elsevier, Amsterdam, pp 75–140Google Scholar
  20. DGRE (Direction Générale des Ressources en Eau) (2009) Annuaire de l’exploitation des nappes profondes de la Tunisie. DGRE, TunisGoogle Scholar
  21. Dlala M, Hfaiedh M (1993) Le séisme du 7 Novembre 1989 à Metlaoui (Tunisie Méridionale): une tectonique active en compression. C R Acad Sci 317:1297–1307Google Scholar
  22. Durov SA (1948) Natural waters and graphic representation of their compositions. Dokl Akad Nauk SSSR 59:87–90Google Scholar
  23. Edmunds WM (2005) Contribution of isotopic and nuclear tracers to study of groundwater. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of a developing science. IAEA, Springer, Netherlands, p 381Google Scholar
  24. Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752CrossRefGoogle Scholar
  25. Edmunds WM, Shand P, Guendouz AH, Moula A, Mamou A, Zouari K (1997) Recharge characteristics and groundwater quality of the grand erg oriental basin. Technical report Wd/97/46R, ViennaGoogle Scholar
  26. Edmunds WM, Guendouz AH, Mamou A, Moula A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822CrossRefGoogle Scholar
  27. Epstein S, Meyada TK (1953) Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  28. Faure G (1986) Principles of isotope geology. Wiley, New York, p 589Google Scholar
  29. Fontes JCH (1985) Some considerations on ground water dating using environmental isotopes hydrogeology in the service of man, Memories of the 18th Congress of the International association of Hydrogeologists, CambridgeGoogle Scholar
  30. Fontes JC, Coque R, Dever L, Filly A, Mamou A (1983) Palèohydrologie isotopique de l’wadi el Akarit (sud tunisien) au Plèistocène et a` l’Holocène. Pal Pal Pal 43:41–61Google Scholar
  31. Fritz P, Clark ID, Fontes JC, Whiticar MJ, Faber E (1992) Deuterium and 13C evidence for low temperature production of hydrogen and methane in a highly alkaline groundwater environment on Oman. In: Kharaka Y, Maest AS (eds) Proceedings of the 7th international symposium on water–rock interaction. Balkema, Park City, pp 793–796Google Scholar
  32. Gat JR (1981) Groundwater. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology, Set IAEA, Vienna. Technical report, Set 210, p 226Google Scholar
  33. Gonfiantini R, Conrad G, Fontes JC, Sauzay G, Payne BR (1974) Etude isotopique de la nappe du continental intercalaire et de ses relations avec les autres nappes du Sahara septentrional. In: Proceedings of IAEA symposium on isotope techniques in groundwater hydrology, Vienna, 1974, pp 227–241Google Scholar
  34. Grabczak J, Kotarba M (1985) Isotope composition of thermal waters in the central part of the Nepal Himalaya. Geothermics 14(4):567–575CrossRefGoogle Scholar
  35. Grassi S, Cortecci G (2005) Hydrogeology and geochemistry of the multilayered confined aquifer of the Pisa plain (Tuscany-Central Italy). Appl Geochem 20:41–54CrossRefGoogle Scholar
  36. Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complex Terminal aquifer in the Algerian Sahara. J Hydrol 11:483–495Google Scholar
  37. Hamed Y (2008) Caractérisation hydrogéologique, hydrochimique et isotopique du système aquifère de Moularès-Tamerza. Ph.D. Thesis, University of Sfax, pp 280Google Scholar
  38. Hamed Y, Dassi L, Ahmadi R, Ben Dhia H (2008) Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia. Hydrol Sci J 53(5):1241–1252CrossRefGoogle Scholar
  39. Hanshaw BB, Back W (1979) Major geochemical processes in the evolution of carbonate aquifer systems. J Hydrol 43:287–312CrossRefGoogle Scholar
  40. IAEA/WMO (1999) Global Network of Isotopes in Precipitation. The GNIP Database, Station 7622500. Accessible at: http://isohis.iaea.org
  41. Kamel S, Dassi L, Zouari K, Abidi B (2005) Geochemical and isotopic investigation of the aquifer system in the Djerid-Nefzaoua basin, southern Tunisia. Environ Geol 49:159–170CrossRefGoogle Scholar
  42. Kamel S, Dassi L, Zouari K (2006) Approche hydrogéologique et hydrochimique des échanges hydrodynamiques entre aquifères profond et superficiel du bassin du Djérid, Tunisie. Hydrol Sci J 51(4):713–730CrossRefGoogle Scholar
  43. Leybourne MI, Clark ID, Goodfellow WD (2006) Stable isotope geochemistry of ground and surface waters associated with undisturbed massive sulfide deposits; constraints on origin of waters and water–rock reactions. Chem Geol 231:300–325CrossRefGoogle Scholar
  44. Maliki MA (2000) Etude hydrogéologique, hydrochimique et isotopique de système aquifère de Sfax (Tunisie). Ph.D. Thesis, University of Tunis IIGoogle Scholar
  45. Maliki MA, Krimissa M, Michelot JL, Zouari K (2000) Relation entre nappes superficielles et aquifère profond dans le bassin de Sfax (Tunisie). CR Acad Sci Rev 331:1–6Google Scholar
  46. Marfiaa AM, Krishnamurthya RV, Atekwanab EA, Pantonc WF (2004) Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting a case study from Belize Central America. Appl Geochem 19:937–946CrossRefGoogle Scholar
  47. McIntosh JC, Walter LM (2006) Paleowaters in Silurian–Devonian carbonate aquifers: geochemical evolution of groundwater in the Great Lakes region since the Late Pleistocene. Geochim Cosmochim Acta 70:2454–2479CrossRefGoogle Scholar
  48. Naeili MS, Boujlel B, Hajji Y, Ouled Ghrib A, Bouzaeine A, Hamed H, Hamed Y and Ben Dhia H (2008) La compagnie des phosphates de Gafsa plus d’un siècle de développement dans son environnement socio-économique. In: 22nd Colloquim of African Geology and 13th conference of Geological Society of Africa Hammamet Tunisia, 4–6 NovemberGoogle Scholar
  49. Ouattani F, Addoum B, Mercier E, Frizon De Lamotte D, Andrieux J (1995) Geometry and kinematics of the south Atlas front, Algeria and Tunisia. Tectonophysics 249:233–248CrossRefGoogle Scholar
  50. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914–923Google Scholar
  51. Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopes fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430CrossRefGoogle Scholar
  52. Sacks LA, Tihansky AB (1996) Geochemical and isotopic composition of groundwater with emphasis on sources of sulphates, in the Upper Floridian aquifer and intermediate aquifer system in southwest Florida. US Geological Survey Water-Resources Investigations report, pp 67Google Scholar
  53. Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22:589–605CrossRefGoogle Scholar
  54. Sonntag C, Klitzsch E, Lohnert EP, El-Shazly EM, Mijnnich KC, Junghans C, Thorweihe U, Weitroffer K, Swailem FM (1978) Paleoclimatic information from deuterium and oxygen-18 in Carbon-14-dated north Saharian groundwaters. In: isotope hydrology, vol II, IAEA-SM-228, (28), pp 569–581Google Scholar
  55. Stuiver M, Polach HA (1977) Discussion reporting of 14C data. Radicarbon 19:355–363Google Scholar
  56. Thomas PE (1893) Exploration scientifique de la Tunisie. Illustrations de quelques fossiles nouveaux ou critiques des terrains tertiaires et secondaires de la Tunisie, recueillis en 1885 et 1886 par Philippe Thomas. Imprimerie Nationale, ParisGoogle Scholar
  57. Traganos G, Jux U, Steuber T (1995) Isotopic characteristics of geothermal waters and fossil spring deposits in Mygdonia basin, northern Greece. Geothermics 24(1):61–80CrossRefGoogle Scholar
  58. Uliana MM, Banner JL, Sharp JJM (2007) Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. J Hydrol 334:334–346CrossRefGoogle Scholar
  59. Vogel JC (1993) Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon–water relations. Academic Press, San Diego, pp 29–46Google Scholar
  60. Zargouni F (1985) Tectonique de l’Atlas Méridional de Tunisie : evolution géométrique et cinématique des structures en zone de cisaillement. Rev Sci Terre 3:304Google Scholar
  61. Zouari H (1995) Evolution géodynamique de l’Atlas centro-méridional de la Tunisie: stratigraphie, analyses géométrique, cinématique et tectono-sédimentaire. Thèse de Doctorat d’Etat, Université de Tunis IIGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Younes Hamed
    • 1
    • 2
  • Lassaad Dassi
    • 2
    • 3
    Email author
  • Meriem Tarki
    • 3
  • Riadh Ahmadi
    • 1
  • Khalid Mehdi
    • 4
  • Hamed Ben Dhia
    • 1
  1. 1.Laboratoire Eau-Energie-Environnement, ENISSfaxTunisia
  2. 2.Département des Sciences de la TerreFaculté des SciencesGabèsTunisia
  3. 3.Unité des Recherche Hydro-sciences Appliquées, ISSTEGabèsTunisia
  4. 4.Faculté des Sciences El JadidaUniversité Chouaïb DoukkaliEl JadidaMarroco

Personalised recommendations