Environmental Earth Sciences

, Volume 63, Issue 7–8, pp 1723–1739 | Cite as

Weathering of sandstone lotus petals at the Angkor site: a 1,000-year stone durability trial

  • Marie-Françoise André
  • Bruno Phalip
  • Olivier Voldoire
  • Franck Vautier
  • Yves Géraud
  • Mhammed Benbakkar
  • Christophe Constantin
  • Fabienne Huber
  • Gilles Morvan
Special Issue


This article is based on field investigations carried out at Ta Keo and Banteay Srei temples (Angkor, Cambodia), which have similar environmental histories and display the same recurrent decorative pattern (lotus petal) in three different sandstone lithotypes. Based on two original scales of mechanical and chemical weathering, the degree of deterioration of c.2000 sandstone petals was visually assessed, resulting in the proposal of a durability scale. An explanatory scheme was provided, based on laboratory analyses of stone materials (ICP-AES, XRD, SEM-EDS, polarizing microscopy and mercury injection). The key drivers of sandstone durability are both mineralogical and petrophysical. The remarkable preservation of the pink sandstone is due to the quartzose nature of its clasts, the non-swelling clay content of its abundant matrix (kaolinite) and its porosity structure (large connected pores and probable non-connected porosity). The overall good preservation of the green sandstone is due to its extremely low porosity and specific surface area, associated with its strong cementation. The severe deterioration of the grey sandstone is due to its laminated structure (oriented biotites), the susceptibility to hygric swelling and solution of its binding agents (chlorite/smectite and calcite) and its porosity structure, which evolves during a two-stage weathering sequence. The first stage is characterized by a bimodal porosity due to the partial clogging of macropores by swelling clays, and the second stage by a substantial increase in porosity and the penetration of salts (barite and anhydrite). Conversely, oxidation phenomena associated with weathering can lead to a drastic reduction of porosity.


Cambodia Angkor temples Chemical weathering Mechanical weathering Stone properties Sandstone durability 



This project was supported by the Maison des Sciences de l’Homme of Clermont-Ferrand (UMS 3108-CNRS) in the frame of the Technè Programme. The authors express their gratitude to the APSARA National Authority, the International Coordinating Committee for the Safeguarding and Development of the Historic site of Angkor (scientific secretariat: UNESCO), the Ecole Française d’Extrême-Orient (B. Dagens, J. Dumarçay, P. Royère, C. Jacques, C. Pottier) and the GACP Team (dir. H. Leisen, Köln Univ.), which encouraged and facilitated this undertaking. Fruitful exchanges have been had over the years with the international community of weathering geomorphologists and geologists working with building stone, with special mention for D. Mottershead (Portsmouth), B.J. Smith, P.A. Warke and S. McCabe (Belfast), H. Viles (Oxford), T. Meierding (Newark), T. Paradise (Fayetteville), J. Swantesson (Karlstad), S. Siegesmund (Göttingen), H. Siedel (Dresden), B. Fitzner (Aachen), R. Přikryl (Prague), Y. Lageat (Brest), D. Sellier and D. Mercier (Nantes), S. Etienne (Papeete), and J.-D. Mertz (Champs-sur-Marne). John Dixon kindly agreed to revise the English text of the first draft. Additional support, including graphical assistance, was provided by Erwan Roussel, Jean-Pierre Magnier, Susanne Ettinger and Christian Devemy. To all we express our warmest thanks.


  1. André MF (2006) Sandstone weathering rates at the Angkor temples (Cambodia). In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vasquez-Calvo C (eds) Heritage, weathering and conservation. Taylor & Francis, London, pp 499–517Google Scholar
  2. André MF, Etienne S, Mercier D, Vautier F, Voldoire O (2008) Assessment of sandstone deterioration at Ta Keo temple (Angkor): first results and future prospects. In: Siegesmund S, Snethlage R, Ruedrich J (eds) Monument future: climate change, air pollution, decay and conservation. Environ Geol (special issue) 56:677–688Google Scholar
  3. André MF, Phalip B, Bonneau J, Robert M (2008b) La durabilité de la pierre monumentale des églises médiévales du Massif central: éléments de diagnostic et perspectives de recherche. Géographies–Bulletin de l’Association de Géographes Français 1:95–118Google Scholar
  4. Aubouin J, Brousse R, Lehman JP (1975) Précis de géologie–Tome 1: Pétrologie. Dunod, Paris, p 717Google Scholar
  5. Bell FG (1993) Durability of carbonate rock as building stone with comments on its preservation. Environ Geol 21:187–200CrossRefGoogle Scholar
  6. Benavente D, García del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127CrossRefGoogle Scholar
  7. Blöchl B, Kirchner D, Stadlbauer E (1998) Die hygrische Dehnung von Baumberger Kalksandstein–ton mineralogische und gesteinphysikalische Aspekte. Arbeitshefte zur Denkmalpflege in Niedersachsen 15:46–53Google Scholar
  8. Bourgès A (2006) Holistic correlation of physical and mechanical properties of selected natural stones for assessing durability and weathering in the natural environment. Dissertation des Fakultät für Geowissenschaften der Ludwigs-Maximilians-Universität München, 201 ppGoogle Scholar
  9. Cantagrel F, Pin C (1994) Major, minor and rare-earth element determinations. In: 25 geostandards by ICP-AES. Geostand Newsl 18(1):123–138CrossRefGoogle Scholar
  10. Carr DD, Strickland J, McDonald WH, Bortz S (1996) Review of durability testing of building stone with annotated bibliography. J Test Eval 24(5):324–328 Google Scholar
  11. Dagens B (1971) Appendix—catalogue de la sculpture de Tâ Kev. In Dumarçay J, Tâ Kèv. Etude architecturale du temple. Mémoires archéologiques EFEO 6:51–68Google Scholar
  12. de Coral-Rémusat G, Goloubew V, Cœdès G (1934) La date du Tà Kèv. Bulletin de l’Ecole Française d’Extrême-Orient XXXIV:401–427Google Scholar
  13. Delvert J (1963) Recherches sur l’érosion des grès des monuments d’Angkor. Bulletin de l’ Ecole Française d’Extrême-Orient LI (2):453–534Google Scholar
  14. Dott RH Jr (1964) Wacke, greywacke and matrix—what approach to immature sandstone classification. J Sed Petrol 34(3):625–632Google Scholar
  15. Dumarçay J (1971) Tâ Kèv. Etude architecturale du temple. Mémoires archéologiques EFEO 6:77Google Scholar
  16. EFEO (1936) Chronique de l’année 1936. Bull Ecole Française d’Extrême-Orient 36(2):537–647Google Scholar
  17. Felix C (1983) Sandstone linear swelling due to isothermal water sorption. In: Wittmann FH (ed) International congress on material science and restoration, Sept. 1983. Technische Akademie Esslingen, Ostfildern, pp 305–310Google Scholar
  18. Fitzner B, Snethlage R (1982) Einfluß der Porenradienverteilung auf das Verwitterungsverhalten ausgewählter Sandsteine. Bautenschutz und Bausanierung 3:97–103Google Scholar
  19. Forbes JR (2003) Dictionnaire français-anglais d’architecture et construction. Editions TEC & DOC, Paris, p 442 pp dico archiGoogle Scholar
  20. Fritz B, Jeannette D (1981) Pétrographie et contrôle géochimique expérimental de transformations superficielles de grès de monuments. Sci Géol Bull 34(4):193–208Google Scholar
  21. Fusey P (1991) Altérations biologiques des grès cambodgiens et recherche des moyens de protection–essai de synthèse. Publications hors série de l’Ecole Française d’Extrême-Orient, Paris, p 91Google Scholar
  22. Grabau A (1904) On the classification of sedimentary rocks. Am Geol 33:228–247Google Scholar
  23. Guéguen Y, Palciauskas V (1992) Introduction à la physique des roches. Hermann, Éditeurs des Sciences et des Arts, Paris, p 302Google Scholar
  24. Hammecker C (1993) Importance des transferts d’eau dans la dégradation des pierres en oeuvre. Thèse Univ, Strasbourg, p 254Google Scholar
  25. Hosono T, Uchida E, Suda C, Ueno A, Nakagawa T (2006) Salt weathering of sandstone at the Angkor monuments, Cambodia: identification of the origin of salts using sulphur and strontium isotopes. J Archaeol Sci 33(11):1541–1551CrossRefGoogle Scholar
  26. Hyvert G (1968) Altérations des grès des monuments khmers. Thèse Université Paris VIGoogle Scholar
  27. Jacques C (1990) Angkor. Bordas, Paris, p 191Google Scholar
  28. Jiménez-González I, Rodríguez-Navarro C, Scherer GW (2008) Role of clay minerals in the physicomechanical deterioration of sandstone. J Geophys Res 113:F02021. doi: 10.1029/2007JF000845
  29. Jung J (1977) Précis de petrographie : roches sédimentaires, métamorphiques et éruptives. Masson, Paris, p 327Google Scholar
  30. Kučera J, Novák JK, Kranda K, Poncar J, Krausová I, Soukal L, Cunin O, Lang M (2008) INAA and petrological study of sandstones from the Angkor monuments. J Radioanal Nucl Chem 278(3):299–306Google Scholar
  31. Leisen H, von Plehwe-Leisen E (1999) Conservation of the bas reliefs at Angkor Wat temple in Cambodia: research, practice, training. ICOM Committee for Conservation, 12th Triennal Meeting, Lyon, 29 August 3 September 1999, II:737–742Google Scholar
  32. Lille R (1967) Les pierres des temples d’Angkor et leurs altérations. Département de géologie du BRGM–Service de sédimentologie et de géologie marine, étude 67/5, 46 ppGoogle Scholar
  33. Marchal H, Batteur C (1920–1922) Journal de fouilles de la Conservation d’Angkor, années 1920–1922 (unpublished)Google Scholar
  34. McAlister JJ, Smith BJ, Curran JA (2003) The use of sequential extraction to examine iron and trace metal mobilisation and the case-hardening of building sandstone: a preliminary investigation. Microchem J 74:5–18CrossRefGoogle Scholar
  35. McCabe S, Smith BJ, Warke PA (2007) Preliminary observations on the impact of complex stress histories on the response of sandstone to salt weathering: laboratory simulations of process combinations. Environ Geol 52:269–276CrossRefGoogle Scholar
  36. McCabe S, Smith BJ, Warke PA (2010) A legacy of mistreatment: conceptualizing the decay of medieval sandstones in NE Ireland. In: Přikryl R, Török Á (eds) Natural stone resources for historical monuments. Geological Society London, Special Publication, vol 333, pp 87–100Google Scholar
  37. McNally GH, Franklin BJ (eds) (2000) Sandstone city—Sydney’s dimension stone and other sandstone geomaterials. Environmental Engineering and Hydrogeology Specialist Group, Geological Society of Australia, 329 ppGoogle Scholar
  38. Meierding TC (1993) Inscription legibility method for estimating rock weathering rates. Geomorphology 6:273–286CrossRefGoogle Scholar
  39. Meierding TC (2004) Arkose ‘brownstone’ tombstone weathering in the Northeastern USA. In: Smith BJ, Turkington AV (eds) Stone decay—its causes and controls. Donhead Publ. Ltd, London, pp 167–197Google Scholar
  40. Mertz JD (1991) Structures de porosité et propriétés de transport dans les grès. Sci Géol Mém 90:149Google Scholar
  41. Mertz JD, Guiavarc’h M (2005) BOUZONVILLE (Moselle, 57). Abbaye Sainte-Croix (ancienne) – Eglise: caractérisation des propriétés des faciès gréseux en œuvre en vue de leur traitement de conservation. Champs-sur-Marne, LRMH, Rapport 1183A, 22 ppGoogle Scholar
  42. Millot G, Cogné J, Jeannette D, Besnus Y, Monnet B, Guri F, Schimpf A (1967) La maladie des grès de la cathédrale de Strasbourg. Bull Serv Carte Géol Als Lorr 20(3):131–157Google Scholar
  43. Mottershead DN (1994) Spatial variation in intensity of alveolar weathering of a dated sandstone structure in a coastal environment, Weston-Super-Mare, UK. In: Robinson DA, Williams RBG (eds) Rock weathering and landform evolution. Wiley, Chichester, pp 151–174Google Scholar
  44. Mottershead DN (2000) Weathering of coastal defensive structures in south-west England: a 500 year stone durability trial. Earth Surf Proc Land 25:1143–1159CrossRefGoogle Scholar
  45. Murray RW, Miller DJ, Kryc KA (2000) Analysis of major and trace elements in rocks, sediments, and interstitial waters by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). Texas A&M University, ODP Technical Note 29, 21 ppGoogle Scholar
  46. Paradise TR (2005) Petra revisited: an examination of sandstone weathering research in Petra, Jordan. Geol Survey Am (Special Paper) 390:39–49Google Scholar
  47. Pellerin FM (1980) La porosité au mercure appliquée à l’étude géomécanique des sols et des roches. Bulletin de liaison du laboratoire des ponts et chaussées 106:105–116Google Scholar
  48. Pettijohn F, Potter PE, Siever R (1972) Sand and sandstone. Springer, Berlin, p 618Google Scholar
  49. Pomerol C, Lagabrielle Y, Renard M (2003) Eléments de géologie. Dunod, Paris, p 746Google Scholar
  50. Přikryl R, Dudková I (2002) Experience with long term experimental exposure of building stones: a 70 years study in the Czech Republic. In: Přikryl R, Viles HA (eds) Understanding and managing stone decay. The Karolinum Press, Prague, pp 135–143Google Scholar
  51. Reucher R, Leisen H, Plehwe-Leisen E, von Kleinschrodt R (2007) Petrographisch-geochemische Untersuchungen von Naturwerksteinen der Tempelanlagen des Angkor Parks/Kambodscha. Z dt Ges Geowiss 158(3):617–629Google Scholar
  52. Ruedrich J, Siegesmund S (2007) Salt and ice crystallisation in porous sandstones. Environ Geol 52:225–249CrossRefGoogle Scholar
  53. Saurin E (1952) Quelques remarques sur les grès d’Angkor. Bulletin de l’ Ecole Française d’Extrême-Orient XLVI:619–634Google Scholar
  54. Scholle PA, Spearing DR (eds) (1982) Sandstone depositional environments. American Association of Petroleum Geologists. Memoir 31, 410 ppGoogle Scholar
  55. Sebastián E, Cultrone G, Benavente D, Linares Fernandez L, Elert K, Rodriguez-Navarro C (2008) Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cult Herit 9:66–76CrossRefGoogle Scholar
  56. Siedel H, Pfefferkorn S, von Plehwe-Leisen E, Leisen H (2009) Sandstone weathering in tropical climate: results of low-destructive investigations at the temple of Angkor Wat, Cambodia. Engineering Geology. doi: 10.1016/j.enggeo.2009.07.003
  57. Smith BJ, Magee RW, Whalley WB (1994) Breakdown patterns of quartz sandstone in a polluted urban environment, Belfast, Northern Ireland. In: Robinson DA, Williams RBG (eds) Rock weathering and landform evolution. Wiley, London, pp 132–150Google Scholar
  58. Smith BJ, Turkington AV, Warke PA, Basheer PAM, McAlister JJ, Meneely J, Curran J (2002) Modelling the rapid, catastrophic retreat of building sandstones. A case study from a polluted maritime environment: Belfast, Northern Ireland. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies, Geological Society London, Special Publications 205:347–362Google Scholar
  59. Snethlage R, Wendler E (1997) Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R (eds) Saving our architectural heritage: the conservation of historic stone structures. Wiley, Chichester, pp 7–24Google Scholar
  60. Thomachot C, Jeannette D (2002) Evolution of the petrophysical properties of two types of Alsatian sandstone subjected to simulated freeze-thaw conditions. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies, Geological Society London, Special Publications 205:19–32Google Scholar
  61. Thomachot-Schneider C, Gommeaux M, Fronteau G (2008) Modifications of the porous network of sandstone accompanying the formation of black varnish. Environ Geol 56:571–582CrossRefGoogle Scholar
  62. Turkington AV, Paradise TR (2005) Sandstone weathering: a century of research and innovation. Geomorphology 67:229–253CrossRefGoogle Scholar
  63. Uchida E, Ogawa Y, Nakagawa T (1998) The stone materials of the Angkor monuments, Cambodia—the magnetic susceptibility and the orientation of bedding plane of the sandstone. J Min Petrol Econ Geol 93:411–426CrossRefGoogle Scholar
  64. Uchida E, Ogawa Y, Maeda N, Nakagawa T (1999) Deterioration of stone materials in the Angkor monuments, Cambodia. Eng Geol 55:101–112CrossRefGoogle Scholar
  65. Walschburn EW (1921) Note on the method of determining the distribution of pores size in a porous material. Proc Nat Acad Sci 7:115–116CrossRefGoogle Scholar
  66. Wangler T, Scherer GW (2008) Clay swelling mechanism in clay-bearing sandstones. Environ Geol 56:529–534CrossRefGoogle Scholar
  67. Weiss T, Siegesmund S, Kirchner D, Sippel J (2004) Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol 46:402–413CrossRefGoogle Scholar
  68. Young RW, Wray RAL, Young ARM (2009) Sandstone landforms. Cambridge University Press, Cambridge, p 304Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marie-Françoise André
    • 1
  • Bruno Phalip
    • 2
  • Olivier Voldoire
    • 1
  • Franck Vautier
    • 1
  • Yves Géraud
    • 3
  • Mhammed Benbakkar
    • 4
  • Christophe Constantin
    • 4
  • Fabienne Huber
    • 5
  • Gilles Morvan
    • 5
  1. 1.Laboratoire de Géographie physique et environnementale (GEOLAB)UMR 6042 CNRS-Université Blaise PascalClermont-Ferrand Cedex 1France
  2. 2.Centre d’Histoire “Espaces et Cultures” (CHEC)-EA 1000Université Blaise PascalClermont-Ferrand Cedex 1France
  3. 3.Institut de Physique du Globe (IPG)UMR 7516 CNRS-Université de Strasbourg/EOSTStrasbourg CedexFrance
  4. 4.Laboratoire Magmas et Volcans (LMV)UMR 6524, OPGC-Université Blaise Pascal-CNRS-IRDClermont-Ferrand CedexFrance
  5. 5.Laboratoire d’Hydrologie et de Géochimie de Strasbourg (LHyGeS)UMR 7517 Université de Strasbourg/EOST, CNRSStrasbourg CedexFrance

Personalised recommendations