Environmental Earth Sciences

, Volume 63, Issue 7–8, pp 1565–1572 | Cite as

Flaw propagation and buckling in clay-bearing sandstones

  • Timothy P. Wangler
  • Alisa Stratulat
  • Philippa Duffus
  • Jean H. Prévost
  • George W. Scherer
Special Issue


Many historically and culturally significant buildings have sandstones that contain swelling clay inclusions in the binding phase. Differential strains that evolve during wetting and drying cycles can generate stresses that are on the order of the strength of the stone, leading to degradation. Most damage observed in the field is surface delamination and buckling of the stone over a flaw, indicating that the damage is occurring during wetting. Classical buckling theory predicts buckling to occur at a particular aspect ratio, or flaw size. The results of this study confirm buckling theory experimentally. Through finite-element simulation and experiment, the study then explores a potential flaw propagation mechanism whereby nonuniform wetting patterns generate stress intensities capable of flaw propagation. As a result, small natural flaws can grow to the critical size necessary for buckling.


Clay Swelling Stress Finite-element analysis Crack growth Buckling Cultural heritage 



This work was supported in part by grant MT-2210-07-NC-05 from the National Center for Preservation Technology and Training.


  1. Atkinson BK (1987) Fracture mechanics of rock. Academic Press, London, p 534Google Scholar
  2. Bloom F, Coffin D (2000) Handbook of thin plate buckling and postbuckling. Chapman & Hall, Boca RatonCrossRefGoogle Scholar
  3. Delgado Rodrigues J (2001) Swelling behavior of stones and its interest in conservation. Materiales de Construcción 51(263–264):183–195CrossRefGoogle Scholar
  4. Duffus P (2007) Mechanics of buckling of stones that expand upon exposure to moisture. Masters thesis, University of Oxford, OxfordGoogle Scholar
  5. Espinosa-Marzal RM, Scherer GW (2010) Mechanisms of damage by salt. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: present-day challenges for the preservation of the past. Special Publications 331, Geological Society, London, pp 61–77Google Scholar
  6. Félix C (1995) Peut-on consolider les grès tendres du Plateau suisse avec le silicate d’éthyle? (Can one consolidate the soft sandstones of the Swiss plateau with ethyl silicate?) In: Pancella R (ed) Preservation and restoration of cultural heritage. Proceedings of LCP congress, Montreux, pp 267–274Google Scholar
  7. Franzini M, Leoni L, Lezzerini M, Cardelli R (2007) Relationships between mineralogical composition, water absorption and hydric dilatation in the ‘Macigno’ sandstones from Lunigiana (Massa, Tuscany). Eur J Mineral 19:113–125CrossRefGoogle Scholar
  8. Goudie A, Viles H (1997) Salt weathering hazards. Wiley, Chichester, p 241Google Scholar
  9. Huang R, Sukumar N, Prévost JH (2003) Modeling quasi-static crack growth with the extended finite element method. Part II: Numerical applications. Int J Solids Struct 40(26):7539–7552CrossRefGoogle Scholar
  10. Hutchinson JW (1996) Mechanics of thin films and multilayers. Department of Solid Mechanics, Technical University of Denmark, pp 1–45. http://www.deas.harvard.edu/hutchinson/
  11. Hutchinson JW, Thouless MD, Liniger EG (1992) Growth and configurational stability of circular, buckling-driven film delaminations. Acta Metall Mater 40(2):295–308CrossRefGoogle Scholar
  12. Jiménez-González I, Scherer GW (2004) Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones. Environ Geol 46:364–377CrossRefGoogle Scholar
  13. Jiménez-González I, Rodríguez-Navarro C, Scherer GW (2008) Role of clay minerals in the physicomechanical deterioration of sandstone. J Geophys Res F Earth Surf 113:F02021. doi: 10.1029/2007JF000845
  14. Koestler RJ, Koestler VH, Charola AE, Nieto-Fernandez FE (eds) (2004) Art, biology, and conservation: biodeterioration of works of art (Metropolitan Museum of Art Series). Metropolitan Museum of Art, New York, p 576Google Scholar
  15. Prévost JH (1983) DYNAFLOW: a nonlinear transient finite element analysis programme. Department of Civil Engineering, Princeton University, PrincetonGoogle Scholar
  16. Rodríguez-Navarro C, Hansen E, Sebastian E, Ginell W (1997) The role of clays in the deterioration of Egyptian limestone sculptures. J Am Inst Cons 36(2):151–163CrossRefGoogle Scholar
  17. Ruedrich J, Siegesmund S (2007) Salt and ice crystallisation in porous sandstones. Environ Geol 52:225–249CrossRefGoogle Scholar
  18. Scherer GW, Jiménez-González I (2005) Characterization of swelling in clay-bearing stone. In: Turkington AV (ed) Stone decay and conservation SP-390. Geological Society of America, pp 51–61Google Scholar
  19. Sébastian E, Cultrone G, Benavente D, Fernandez LL, Elert K, Rodríguez-Navarro C (2008) Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cult Her 9(1):66–76CrossRefGoogle Scholar
  20. Sukumar N, Prévost JH (2003) Modeling quasi-static crack growth with the extended finite element method. Part I: Computer implementation. Int J Solids Struct 40(26):7513–7537CrossRefGoogle Scholar
  21. Wangler TP, Scherer GW (2008) Clay swelling mechanism in clay-bearing sandstones. Environ Geol 56:529–534CrossRefGoogle Scholar
  22. Wangler TP, Scherer GW (2009) Clay swelling inhibition mechanism of α,ω-diaminoalkanes in Portland Brownstone. J Mater Res 24(5):1646–1652CrossRefGoogle Scholar
  23. Wendler E, Klemm DD, Snethlage R (1990) Consolidation and hydrophobic treatment of natural stone. In: Baker JM, Nixon PJ, Majumdar AJ, Davies H (eds) Proc 5th international conference on durability of building materials and components. Chapman & Hall, London, pp 203–212Google Scholar
  24. Wendler E, Charola AE, Fitzner B (1996) Easter Island tuff: laboratory studies for its consolidation. In: Riederer J (ed) 8th international congress on deterioration and conservation of stone. Moller Druck und Verlag, Berlin, pp 1159–1170Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Timothy P. Wangler
    • 1
    • 2
  • Alisa Stratulat
    • 3
  • Philippa Duffus
    • 3
  • Jean H. Prévost
    • 4
  • George W. Scherer
    • 4
  1. 1.Institute for Technology in Architecture, ETH ZürichZurichSwitzerland
  2. 2.Empa Swiss Federal Institute for Materials Testing and ResearchDübendorfSwitzerland
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK
  4. 4.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations