Environmental Earth Sciences

, Volume 62, Issue 7, pp 1461–1479 | Cite as

The use of multivariate statistical analysis of geochemical data for assessing the spatial distribution of soil contamination by potentially toxic elements in the Aljustrel mining area (Iberian Pyrite Belt, Portugal)

  • C. Candeias
  • E. Ferreira da Silva
  • A. R. Salgueiro
  • H. G. Pereira
  • A. P. Reis
  • C. Patinha
  • J. X. Matos
  • P. H. Ávila
Original Article


Aljustrel mine is located in SW Portugal, in the western sector of the Iberian Pyrite Belt. The Aljustrel village was developed around the exploitations of massive polymetallic sulphides that occur in the area (4 orebodies mined, 2 in exploration phase). The pyrite ore was extensively exploited from 1850 to 1993, when production was discontinued. A mining restart occurred in 2008, only during a few months. The objectives of the study were to assess the levels of soil contamination, to determine associations between the different chemical elements and their spatial distribution, as well as to identify possible sources of contamination that can explain the spatial patterns of soil pollution in the area. Principal component analysis combined with spatial interpretation successfully grouped the elements according to their sources and provided evidence about their geogenic or anthropogenic origin. From this study, it is possible to conclude that soils around Algares/Feitais tailing deposits, Estéreis and Águas Claras mine dams and S. João mine show severe contamination. The highest concentrations of As (up to 3,936 mg kg−1) and certain heavy metals (up to 321.7 mg kg−1 for Bi, 5,414 mg kg−1 for Cu, 20,000 mg kg−1 for Pb, 980.6 mg kg−1 for Sb, and 22 mg kg−1 Cd) were obtained near Algares area while the highest concentration of Cd (up to 61.6 mg kg−1) and Zn (up to 20,000 mg kg−1) were registered in samples collected in the S. João area. The highest pollution load index (>4.0) was recorded at the Algares area where the metal concentrations exceed typical soil background levels by as much as two orders of magnitude.


Soil Multivariate data analysis Geostatistics Aljustrel mine Environmental geochemistry 



This study was carried out in the framework of the projects e-EcoriskA regional Enterprise Network Decision Support System for Environmental Risk and Disaster Management of Large-Scale Industrial Spills (contract no. EV41-CT-2002-00068) and EVALUSEEnvironmental Vulnerability of Aljustrel Mining Area in Terms of Land Use supported by the European Union and FCT-Fundação para a Ciência e Tecnologia, respectively. The authors would like to thank the anonymous reviewers for their valuable comments which highly improved the manuscript.


  1. Allan R (1995) Impact of mining activities on the terrestrial and aquatic environment with emphasis on mitigation and remedial measures. In: Salomons W, Forstner U, Mader P (eds) Heavy metals: problems and solutions. Springer, Berlin, pp 119–140Google Scholar
  2. Alpers CN, Nordstrom DK 1999 Geochemical modeling of water-rock interactions in mining environments. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Part A: Processes, techniques and health issues, vol 6A. Reviews in economic geology, Littleton, Society of Economic Geologists, pp 289–323Google Scholar
  3. Alpers CN, Blowes DW, Nordstrom DK, Jambor JL (1994) Secondary minerals and acid mine-water chemistry. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulfide mine waste, vol 22. Mineralogical Association of Canada, Nepean, pp 247–270Google Scholar
  4. Andrade F, Schermerhorn L (1971) Aljustrel e Gavião. Principais Jazigos Minerais do Sul de Portugal. Livro-Guia 4:32–59Google Scholar
  5. Azcue J (ed) (1999) Environmental impacts of mining activities: emphasis on mitigation and remedial measures. Springer, BerlinGoogle Scholar
  6. Barriga FS (1983) Hydrotermal metamorphism and ore genesis at Aljustrel, Portugal. PhD Thesis, University Western Ontario, LondonGoogle Scholar
  7. Barriga FS (1990) Metallogenesis in the Iberian Pyrite Belt. In: Dallmeyer RD, Martinez García E (eds) Pre-Mesozoic geology of Iberia. Springer, Berlin, pp 369–379Google Scholar
  8. Barriga FS, Fyfe WS (1988) Giant Pyritic base metal deposits: the example of Feitais (Aljustrel, Portugal). Chem Geol 69:331–343. doi: 10.1016/0009-2541(88)90044-7 CrossRefGoogle Scholar
  9. Barriga FS, Carvalho D, Ribeiro A (1997) Introduction to the Iberian Pyrite Belt, vol 27. Society of Economic Geologists, Guidebook Series, pp 1–20Google Scholar
  10. Bigham JM (1994) Mineralogy of ochre deposits. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulfide mine waste, vol 22. Mineralogical Association of Canada, Nepean, pp 103–131Google Scholar
  11. Bobos I, Durães N, Noronha F (2006) Mineralogy and geochemistry of mill tailings impoundments from Algares (Aljustrel), Portugal: Implications for acid sulfate mine waters formation. J Geochem Explor 88:1–5. doi: 10.1016/j.gexplo.2005.08.004 CrossRefGoogle Scholar
  12. Bowie SHU, Thornton I (1984) Environmental geochemistry and health. Report the Royal Society’s British national committee for problems of the environment. D. Reidel Publishing Company, DordrechtGoogle Scholar
  13. Cardoso JC (1995) Utilização da análise em componentes principais, variografia e krigagem factorial na identificação de anomalias geoquímicas, empregando sedimentos de linhas de água como meio amostral. PhD Thesis, Universidade de AveiroGoogle Scholar
  14. Carvalho D, Barriga FJAS, Munhá J (1999) Bimodal siliciclastic systems: the case of the Iberian Pyrite Belt. Rev Econ Geol 8:375–408Google Scholar
  15. Cohen RRH, Gorman J (1991) Mining-related nonpoint-source pollution. Wat Environ Technol 3:55–59Google Scholar
  16. Davis JC (1973) Statistics and data analysis in geology. Wiley, New YorkGoogle Scholar
  17. Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New YorkGoogle Scholar
  18. Dawson GL, Caessa P, Alverca R, Sousa JC (2001) Geology of the Aljustrel Mine area, southern Portugal. GEODE Workshop “Massive sulfide deposits in the Iberian Pyrite Belt: new advances and comparisons with equivalent systems”, Aracena, Spain. Aljustrel, Eurozinc, Aljustrel Field Trip GuidebookGoogle Scholar
  19. Dold B (2003) Secondary enrichment processes in sulfidic mine tailings: lessons for supergene ore formation. SGA News 16:10–15Google Scholar
  20. Domergue C (1983) La mine antique d’Aljustrel (Portugal) et les tables de bronze de Vipasca. Conimbriga XXII:35Google Scholar
  21. Einax JW, Soldt U (1999) Geostatistical and multivariate statistical method for the assessment of polluted soils; merits and limitations. Chemometr Intell Lab Syst 46:79–91. PII:S0169- 7439-98.00152-XGoogle Scholar
  22. Evangelou VPB, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Env Sci Tec 25:141–199. doi: 10.1080/10643389509388477 CrossRefGoogle Scholar
  23. FAO (1999) World reference base for soil resources, 2nd edn. World Soil Resources. Report 103, RomeGoogle Scholar
  24. Fernandes JC, Henriques FS (1989) Holm-oak (Quercus rotundifolia lam.) trees growing in a pyrites mining area at Aljustrel, Portugal. Water Air Soil Poll 48:409–415. doi: 10.1007/BF00283338 CrossRefGoogle Scholar
  25. Galán E, Fernández-Caliani JC, González I, Aparicio P, Romero A (2008) Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of Southwest Spain. J Geochem Explor 98:89–106. doi: 10.1016/j.gexplo.2008.01.001 CrossRefGoogle Scholar
  26. Gaspar OC (1996) Microscopia e petrologia de minérios aplicados à génese, exploração e mineralurgia dos sulfuretos maciços dos jazigos de Aljustrel e Neves-Corvo. Estudos, Notas e Trabalhos do IGM 38:3–195Google Scholar
  27. Goovaerts P (1999) Using elevation to aid geostatistical mapping of rainfall erosivity. Catena 34:227–242. doi: 10.1016/S0341-8162(98)00116-7 CrossRefGoogle Scholar
  28. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca RatonGoogle Scholar
  29. Kabata-Pendias A, Wlacek K (1985) Excessive uptake of heavy metals by plants from contaminated soil. Soil Sci Ann 36:33Google Scholar
  30. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151CrossRefGoogle Scholar
  31. Kelly M (1988) Mining and the freshwater environment. Elsevier Applied Science, LondonGoogle Scholar
  32. Kimball BA, Bencala KE, Runkel RL (2000) Quantifying effects of metal loading from mine discharges. ICARD 2000: Proceedings from the fifth international conference on acid rock drainage, vol 2, pp 1381–1390Google Scholar
  33. Larocque ACL, Rasmussen PE (1998) An overview of trace metals in the environment, from mobilization to remediation. Environ Geol 33:85–91. doi: 10.1007/s002540050227 CrossRefGoogle Scholar
  34. Leitão J (1998) Geologia dos depósitos de sulfuretos maciços de Aljustrel. Livro-Guia das excursões do V Congresso Nacional de Geologia, IGM, pp 91–100Google Scholar
  35. Lin YP, Teng TP, Chang TK (2002) Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua County in Taiwan. Landsc Urban Plann 62:19–35. doi: 10.1016/S0169-2046(02)00094-4 CrossRefGoogle Scholar
  36. Luís AT, Teixeira P, Almeida SFP, Ector L, Matos JX, Ferreira da Silva EA (2009) Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of Aljustrel Mining Area (Portugal). Water Air Soil Poll 200:147–167. doi: 10.1007/s11270-008-9900-z CrossRefGoogle Scholar
  37. Martins J (2005) Recuperação ambiental da área mineira de Aljustrel. III Encontro Comunidades Mineiras de Aljustrel, CM AljustrelGoogle Scholar
  38. Martins A, Alves H, Costa T (2003) 2000 anos de Mineração em Aljustrel; brochura da Exposição do Museu Municipal de Arqueologia de Aljustrel, Câmara Municipal de AljustrelGoogle Scholar
  39. Massart DL, Kaufman L (1983) The interpretation of analytical chemical data by the use of cluster analysis. Wiley, New York, p 65Google Scholar
  40. Matos JX (2005) Carta geológica e mineira da Mina de Aljustrel esc. 1/5000, INETIGoogle Scholar
  41. Matos JX, Martins LP (2003) Itinerários geo-ecoeducacionais como factor de desenvolvimento sustentado do turismo temático associado à Faixa Piritosa Ibérica. Abst. IV Cong. Int. Património Geológico y Minero, SEDPGYM, Utrillas, Espanha, pp 539–557Google Scholar
  42. Matos JX, Martins LP (2006) Reabilitação ambiental de áreas mineiras do sector português da Faixa Piritosa Ibérica: estado da arte e perspectivas futuras. Boletín Geológico y Minero, Espanha, vol 117, no 2, pp 289–304Google Scholar
  43. Matos JX, Barriga FJAS, Oliveira V (2003) Alunite veins versus supergene kaolinite/halloysite alteration in the Lagoa Salgada, Algares and São João (Aljustrel) and S. Domingos massive sulphide deposits, Iberian Pyrite Belt, Portugal. Rev. Ciências da Terra (UNL), Lisboa, pp B56–B59Google Scholar
  44. Merson J (1992) Mining with microbes. New Sci 133:17–19Google Scholar
  45. Moore JN, Luoma SN (1990) Hazardous wastes from large-scale metal extraction. Environ Sci Technol 24:1279–1285. doi: 10.1021/es00079a001 CrossRefGoogle Scholar
  46. Morin AK, Hutt NM (1997) Environmental geochemistry of minesite drainage. Practical theory and case studies. MDAG Publishing, VancouverGoogle Scholar
  47. National Research Council (NRC) (1974) Geochemistry of the environment: volume I, the relation of selected trace elements to health and disease. National Academy of Sciences, WashingtonGoogle Scholar
  48. National Research Council (NRC) (1977) Geochemistry of the environment: volume II, the relation of other selected trace elements to health and disease. National Academy of Sciences, WashingtonGoogle Scholar
  49. Nero G (2005) A problemática da recuperação ambiental das áreas mineiras degradadas a nível nacional. Abst. III Encontro Comunidades Mineiras de Aljustrel, CM AljustrelGoogle Scholar
  50. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waste. In: Plumlee GS, Logsdon MJ (eds) Reviews in economic geology, the environmental geochemistry of ore deposits. Part A: Processes, techniques, and health issues, vol 6A, pp 133–160Google Scholar
  51. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49. doi: 10.1038/338047a0 CrossRefGoogle Scholar
  52. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi: 10.1038/333134a0 CrossRefGoogle Scholar
  53. Oliveira JT, Relvas JMRS, Pereira Z et al (2006) O Complexo Vulcano-Sedimentar da Faixa Piritosa: estratigrafia, vulcanismo, mineralizações associadas e evolução tectonoestratigráfica no contexto da Zona Sul Portugesa. In Dias R, Araújo A, Terrinha P, Kulberg JC (eds) Geologia de Portugal no Contexto da Ibéria, Universidade Évora, Portugal, VII Cong. Nac. Geologia, pp 207–244Google Scholar
  54. Pacheco N, Carvalho P, Ferreira A (1998) Geologia da Mina de Neves Corco e do Vulcanismo do Anticlinório de Panóias—Castro Verde. V Congresso Nacional de Geologia. Livro Guia de ExcursõesGoogle Scholar
  55. Patinha C, Correia E, Ferreira da Silva E, Simões A, Reis P, Morgado F, Cardoso Fonseca E (2008) Definition of geochemical patterns on the soil of Paul de Arzila using correspondence analysis. J Geochem Explor 98:34–42. doi: 10.1016/j.gexplo.2007.10.001 CrossRefGoogle Scholar
  56. Pereira R, Ribeiro R, Gonçalves F (2004) Plan for an integrated human and environmental risk assessment in the S. Domingos Mine Area (Portugal). Hum Ecol Risk Assess 10:543–578. doi: 10.1080/10807030490452197 CrossRefGoogle Scholar
  57. Perona E, Bonilla I, Mateo P (1999) Spatial and temporal changes in water quality in a Spanish river. Sci Total Environ 241:75–90. doi: 10.1016/S0048-9697(99)00334-4 CrossRefGoogle Scholar
  58. Qishlaqi A, Moore F (2007) Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River Banks, Shiraz, Iran. Am Eurasian J Agric Environ Sci 2:565–573Google Scholar
  59. Rasmussen PE (1998) Long-range atmospheric transport of trace metals: the need for geosciences perspectives. Environ Geol 33:96–108. doi: 10.1007/s002540050229 CrossRefGoogle Scholar
  60. Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16. doi: 10.1016/j.scitotenv.2004.11.023 CrossRefGoogle Scholar
  61. Reis AP, Sousa AJ, Ferreira da Silva E, Patinha C, Cardoso Fonseca E (2004) Combining multiple correspondence analysis with factorial kriging analysis for geochemical mapping of the gold-silver deposit at Marrancos (Portugal). Appl Geochem 19:623–631. doi: 10.1016/j.apgeochem.2003.09.003 CrossRefGoogle Scholar
  62. Reis AP, Ferreira da Silva E, Matos J, Patinha C, Sousa AJ e Cardoso Fonseca E (2005) Combining GIS and stochastic simulation to define spatial patterns of variability for lead at the Lousal mine, Portugal. Land Degrad Dev 16:229–242. doi: 10.1002/ldr.662
  63. Relvas JMRS (1990) Estudo geológico e metalogenético da área de Gavião, Baixo Alentejo. Unpublished MSc thesis, University of Lisbon (Portugal)Google Scholar
  64. Relvas JS, Massano C, Barriga F (1990) Ore zone hydrothermal alteration around the Gavião orebodies: implications for exploration in the Iberian Pyrite Belt; VIII Semana de Geoquímica, LisboaGoogle Scholar
  65. Relvas JMRS, Barriga FJAS, Ferreira A, Noiva PC, Pacheco N, Barriga G (2006) Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal: I. geology, mineralogy, and geochemistry. Econ Geol 101(4):753–790. doi: 10.2113/gsecongeo.101.4.753 CrossRefGoogle Scholar
  66. Ripley EA, Redman RE, Crowder AA (1996) Environmental effects of mining. St Lucie Press, Delray BeachGoogle Scholar
  67. Salman SR, Abu Rukah YH (1999) Multivariate and principal component statistical analysis of contamination in urban and agricultural soils from North Jordan. Environ Geol 38:265–270. doi: 10.1007/s002540050424 CrossRefGoogle Scholar
  68. Salminen R, Tarvainen T (1997) The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. J Geochem Explor 60:91–98. doi: 10.1016/S0375-6742(97)00028-9 CrossRefGoogle Scholar
  69. Salomons W (1995) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52:5–23. doi: 10.1016/0375-6742(94)00039-E CrossRefGoogle Scholar
  70. Santos Oliveira JM, Farinha J, Matos JX, Ávila P, Rosa C, Canto Machado MJ, Daniel FS, Martins L, Machado Leite MR (2002) Diagnóstico Ambiental das Principais Áreas Mineiras Degradadas do País. Boletim de Minas 39:67–85Google Scholar
  71. Schermerhorn L, Andrade R (1971) A Faixa Piritosa do Sul de Portugal; I Congresso Hispano-Americano de Geologia Económica; Livro-Guia da Excursão, n.º 4, Principais Jazigos Minerais do Sul de PortugalGoogle Scholar
  72. Schermerhorn L, Zbyzewski G, Ferreira V (1987) Notícia Explicativa da Carta Geológica Portugal Fl. 42D, Sociedade Geológica de PortugalGoogle Scholar
  73. Silva JB, Oliveira V, Matos J, Leitão JC (1997) Field Trip nº2, Aljustrel and Central Iberian Pyrite Belt. SEG Neves Corvo Field Conference. Guidebook series, vol 27, pp 73–124Google Scholar
  74. Soucek DJ, Cherry DS, Currie RJ et al (2000) Laboratory to field validation in an integrative assessment of an acid mine drainage-impacted watershed. Environ Toxicol Chem 19:1036–1043. doi: 10.1002/etc.5620190433 Google Scholar
  75. Starnes LB, Gasper DC (1995) Effects of surface mining on aquatic resources in North America. Fisheries 20:20–23Google Scholar
  76. Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessments of heavy metal levels in estuaries and formation of a pollution index. Helgol Mar Res 33:566–575. doi: 10.1007/BF02414780 Google Scholar
  77. Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307. doi: 10.1016/j.oregeorev.2004.12.005 CrossRefGoogle Scholar
  78. Tuncer GT, Tuncel SG, Tuncel G, Balkas TI (1993) Metal pollution in the Golden Horn, Turkey: contribution of natural and anthropogenic components since 1913. Water Sci Technol 28:50–64Google Scholar
  79. UN/DTCD–UN, DSE, Department of Technical Co-operation for Development and German Foundation for International Development (1992) Mining and the environment. The Berlin Guidelines, Mining Journal Books Ltd, LondonGoogle Scholar
  80. Wackernagel H (1998) Multivariate geostatistics: an introduction with applications, 2nd edn. Springer, BerlinGoogle Scholar
  81. Webster R, Oliver MA (1990) Statistical methods in soil and land resource survey. Oxford University Press, OxfordGoogle Scholar
  82. Xu J, Thornton I (1985) Arsenic in garden soils and vegetable crops in Cornwall, England: implications for human health. Environ Geochem Health 7:131–133. doi: 10.1007/BF01786639 CrossRefGoogle Scholar
  83. Yukselen MA, Alpaslan B (2001) Leaching of metals from soil contaminated by mining activities. J Hazard Mater B87:289–300. doi: 10.1016/S0304-3894(01)00277-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Candeias
    • 1
  • E. Ferreira da Silva
    • 1
  • A. R. Salgueiro
    • 1
    • 2
  • H. G. Pereira
    • 2
  • A. P. Reis
    • 1
  • C. Patinha
    • 1
  • J. X. Matos
    • 3
  • P. H. Ávila
    • 1
    • 4
  1. 1.GeoBioTec-GeoBiosciences, Geotechnologies and Geoengineering Research Center, Departamento de GeociênciasUniversidade de AveiroAveiroPortugal
  2. 2.CERENA-Natural Resources and Environment Research Center, Instituto Superior TécnicoLisbonPortugal
  3. 3.LNEG-National Laboratory of Energy and GeologyBejaPortugal
  4. 4.LNEG-National Laboratory of Energy and Geology, Lab. S. Mamede de Infesta, Rua da AmieiraS. Mamede de InfestaPortugal

Personalised recommendations