Advertisement

Environmental Earth Sciences

, Volume 62, Issue 3, pp 541–557 | Cite as

Diffuse and concentrated recharge evaluation using physical and tracer techniques: results from a semiarid carbonate massif aquifer in southeastern Spain

  • Francisco J. AlcaláEmail author
  • Yolanda Cantón
  • Sergio Contreras
  • Ana Were
  • Penélope Serrano-Ortiz
  • Juan Puigdefábregas
  • Albert Solé-Benet
  • Emilio Custodio
  • Francisco Domingo
Original Article

Abstract

In the high-permeability, semiarid carbonate aquifer in the Sierra de Gádor Mountains (southeastern Spain), some local springs draining shallow perched aquifers were of assistance in assessing applicability of the atmospheric chloride mass balance (CMB) for quantifying total yearly recharge (R T) by rainfall. Two contrasting hydrological years (October through September) were selected to evaluate the influence of climate on recharge: the average rainfall year 2003–2004, and the unusually dry 2004–2005. Results at small catchment scale were calibrated with estimated daily stand-scale R T obtained by means of a soil water balance (SWB) of rainfall, using the actual evapotranspiration measured by the eddy covariance (EC) technique. R T ranged from 0.35 to 0.40 of rainfall in the year, with less than a 5% difference between the CMB and SWB methods in 2003–2004. R T varied from less than 0.05 of rainfall at mid-elevation to 0.20 at high elevation in 2004–2005, with a similar difference between the methods. Diffuse recharge (R D) by rainfall was quantified from daily soil water content field data to split R T into R D and the expected concentrated recharge (R C) at catchment scale in both hydrological years. R D was 0.16 of rainfall in 2003–2004 and 0.01 in 2004–2005. Under common 1- to 3-day rainfall events, the hydraulic effect of R D is delayed from 1 day to 1 week, while R C is not delayed. This study shows that the CMB method is a suitable tool for yearly values complementing and extending the more widely used SWB in ungauged mountain carbonate aquifers with negligible runoff. The slight difference between R T rates at small catchment and stand scales enables results to be validated and provides new estimates to parameterize R T with rainfall depth after checking the weight of diffuse and concentrated mechanisms on R T during moderate rainfall periods and episodes of marked climatic aridity.

Keywords

Recharge Diffuse Concentrated Mountain carbonate areas Semiarid climate SE Spain 

Notes

Acknowledgments

This research was funded by Spanish CICYT Research Projects FIS2005-07083-C02-02, CGL2006-11619/HID and CGL2009-12910-C03 and Andalusian Research Projects P06-RNM-01732, RNM-332 and RNM-3721. The authors would like to thank the personnel of the IGME Chemical Laboratory. The first author is also grateful to the Spanish Ministry of Education and Science for a “Juan de la Cierva” Programme Contract (JCI-2007-123-334) and to the Portuguese Ministry of Science, Technology and Higher Education for a “Ciência 2008” Programme Contract (C2008-IST/CVRM.1). The authors would like to thank Alfredo Durán Sánchez and Diego Moreno for their invaluable help in the field work. We also wish to express our gratitude to the two anonymous reviewers for their valuable advice and comments.

References

  1. Alcalá FJ, Custodio E (2008a) Atmospheric chloride deposition in continental Spain. Hydrol Process 22(18):3636–3650CrossRefGoogle Scholar
  2. Alcalá FJ, Custodio E (2008b) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359(1–2):189–207CrossRefGoogle Scholar
  3. Alcalá FJ, Custodio E, Contreras S, Araguás LJ, Domingo F, Pulido-Bosch A, Vallejos Á (2007) Influencia de la aridez climática, la altitud y la distancia al mar sobre el contenido en cloruro y en δ18O del agua de recarga y del agua subterránea en macizos carbonatados costeros del SE peninsular español. Caso de Sierra de Gádor. In: Pulido-Bosch A, López-Geta JA, Ramos G (eds) Coastal aquifers intrusion technology: Mediterranean countries (TIAC’07), vol 1. IGME, Madrid, pp 871–885Google Scholar
  4. Anderson DE, Verma SB, Rosenberg NJ (1984) Eddy correlation measurements of CO2, water vapour and sensible heat fluxes over a crop surface. Boundary Layer Meteorol 29:167–183CrossRefGoogle Scholar
  5. Andreo B, Vías J, Durán JJ, Jiménez P, López-Geta JA, Carrasco F (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeol J 16(5):911–925CrossRefGoogle Scholar
  6. Bruno RD, da Rocha HR, de Freitas HC, Goulden ML, Miller SD (2006) Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrol Process 20:2477–2489CrossRefGoogle Scholar
  7. Cantón Y, Villagarcía L, Moro MJ, Serrano-Ortiz P, Were A, Alcalá FJ, Kowalski AS, Solé-Benet A, Lázaro R, Domingo F (2010) Temporal dynamics of soil water balance components in a Mediterranean carbonate range in SE Spain: estimation of potential recharge. Hydrol Sci J (accepted)Google Scholar
  8. Contreras S, Boer MM, Alcalá FJ, Domingo F, García M, Pulido-Bosch A, Puigdefábregas J (2008) An ecohydrological modelling approach for assessing long-term recharge rates in semiarid karstic landscapes. J Hydrol 351:42–57CrossRefGoogle Scholar
  9. Cruz-Sanjulián J, Araguás L, Rozanski K, Benavente J, Cardenal J, Hidalgo C, García-López S, Martínez-Garrido JC, Moral F, Olías M (1992) Sources of precipitation over south-eastern Spain and groundwater recharge. An isotopic study. Tellus 44B:226–236Google Scholar
  10. Custodio E (2009a) Estimation of aquifer recharge by means of atmospheric chloride deposition balance. Contributions to Science I 5(2)Google Scholar
  11. Custodio E (2009b) Recarga a los acuíferos extensos a partir de la deposición atmosférica de cloruros y de la temperatura del terreno. Boletín Geológico y Minero 120(4):631–640Google Scholar
  12. Custodio E, Llamas MR (1976–1983) Hidrología Subterránea. Omega, BarcelonaGoogle Scholar
  13. Custodio E, Llamas MR, Samper J (1997) La evaluación de la recarga a los acuíferos en la Planificación Hidrológica. IAH Spanish Chapter/ITGE, MadridGoogle Scholar
  14. De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17CrossRefGoogle Scholar
  15. Delin GN, Herkelrath WN (2005) Use of soil moisture probes to estimate ground water recharge at an oil spill site. J Am Water Resour Assoc 41(6):1259–1277CrossRefGoogle Scholar
  16. Domínguez P (2000) Funcionamiento hidrogeológico y mecanismos de intrusión marina en sistemas carbonatados de estructura compleja: aplicación al Acuífero Inferior Noreste (AIN) del Campo de Dalías (Almería). Ph.D. Thesis. Universitat Politècnica de CatalunyaGoogle Scholar
  17. Eliers VHM, Carter RC, Rushton KR (2007) A single layer soil water balance model for estimating deep drainage (potential recharge): an application to cropped land in semi-arid north-east Nigeria. Geoderma 140:119–134CrossRefGoogle Scholar
  18. Falkland A, Custodio E (1991) Hydrology and water resources of small islands: a practical guide. Studies and Reports in Hydrology, 49. UNESCO, ParisGoogle Scholar
  19. Frot E, Van Wesemael B, Solé-Benet A, House MA (2008) Water harvesting potential in function of hillslope characteristics: a case study from the Sierra de Gador (Almeria province, south-east Spain). J Arid Environ 72(7):1213–1231CrossRefGoogle Scholar
  20. Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2:255–266CrossRefGoogle Scholar
  21. Gurdak JJ, Hanson RT, McMahon PB, Bruce BW, McCray JE, Thyne GD, Reedy RC (2007) Climate variability controls on unsaturated water and chemical movement, High Plains Aquifer, USA. Vadose Zone J 6(2):533–547CrossRefGoogle Scholar
  22. Hautman DP, Munch DJ (1997) EPA 300 1. Determination of inorganic anions in drinking water by ion chromatography. Revision 1.0. USEPA, Office of Water. EPA, CincinnatiGoogle Scholar
  23. Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41:W06010. doi: 10.01029/02004WR003841 CrossRefGoogle Scholar
  24. Kovalevskii VS (2007) Effect of climate changes on groundwater. Water Resour 34(2):140–152CrossRefGoogle Scholar
  25. Kowalski AS, Anthoni PM, Vong RJ, Delany AC, Maclean GD (1997) Deployment and evaluation of a system for ground-based measurement of cloud liquid water turbulent fluxes. J Atmos Ocean Technol 14(3):468–479CrossRefGoogle Scholar
  26. Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J (2001) Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J Arid Environ 48:373–395CrossRefGoogle Scholar
  27. Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge. A guide to understanding and estimating natural recharge. IAH International Contributions to Hydrogeology, vol 8, Heise. HannoverGoogle Scholar
  28. Li XY, Contreras S, Solé-Benet A (2008) Unsaturated hydraulic conductivity in limestone dolines: influence of vegetation and rock fragments. Geoderma 145:288–294CrossRefGoogle Scholar
  29. Maréchal JC, Varma MRR, Riotte J, Vouillamoz JM, Kumar MSM, Ruiz L, Sekhar M, Braun JJ (2009) Indirect and direct recharges in a tropical forested watershed: Mule Hole, India. J Hydrol 364:272–284CrossRefGoogle Scholar
  30. Marín-Lechado C, Galindo-Zaldívar J, Rodríguez-Fernández LR, González-Lodeiro F (2005) Structure of the Campo de Dalías from gravimetric and seismic data. Faulted hybrid joints: an example from the Campo de Dalias (Betic Cordilleras, Spain). J Struct Geol 26:2025–2037CrossRefGoogle Scholar
  31. Martin-Rojas I, Somma R, Delgado F, Estévez A, Iannace I, Perrone V, Zamparelli V (2009) Triassic continental rifting of Pangaea: direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. J Geol Soc 166:447–458CrossRefGoogle Scholar
  32. Martín-Rosales W, Gisbert J, Pulido-Bosch A, Vallejos Á, Fernández-Cortés Á (2007) Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain). Environ Geol 52:985–995CrossRefGoogle Scholar
  33. Oyonarte C, Escoriza I, Delgado R, Pinto V, Delgado G (1998) Water-retention capacity in fine earth and gravel fractions of semiarid mediterranean montane soils. Arid Soil Res Rehabil 12:29–45Google Scholar
  34. Pulido-Bosch A, Pulido-Lebouf P, Molina L, Vallejos A, Martín-Rosales W (2000) Intensive agriculture, wetlands, quarries and water management. A case study (Campo de Dalías, SE Spain). Environ Geol 40(1–2):163–168CrossRefGoogle Scholar
  35. Ross M, Geurink J, Said A, Aly A, Tara P (2001) Evapotranspiration conceptualization in the HSPF-MODFLOW integrated models. J Am Water Resour Assoc 41:1013–1025CrossRefGoogle Scholar
  36. Rushton KR, Eilers VHM, Carter RC (2006) Improved soil moisture balance methodology for recharge estimation. J Hydrol 318:379–399CrossRefGoogle Scholar
  37. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds M, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20(15):3335–3370CrossRefGoogle Scholar
  38. Serrano-Ortiz P, Domingo F, Cazorla A, Were A, Cuezva S, Villagarcía L, Alados-Arboledas L, Kowalski AS (2009) Interannual CO2 exchange of a sparse Mediterranean shrubland on a carbonaceous substrate. J Geophys Res 114:G04015. doi: 10.1029/2009JG000983 CrossRefGoogle Scholar
  39. Simmers I, Hendrickx JMH, Kruseman GP, Rushton KR (1997) Recharge of phreatic aquifers in (semi)arid areas. International Contributions to Hydrogeology 19. IAH, Balkema, RotterdamGoogle Scholar
  40. Sorman AU, Abdulrazzak MJ, Morel-Seytoux HJ (1997) Groundwater recharge estimation from ephemeral streams. Case study: Wadi Tabalah, Saudi Arabia. Hydrol Process 11:1607–1619CrossRefGoogle Scholar
  41. Summer G, Homar V, Ramis C (2000) Precipitation seasonality in eastern and southern coastal Spain. Int J Climatol 21:219–247CrossRefGoogle Scholar
  42. Vallejos A, Pulido-Bosch A, Martín-Rosales W, Calvache ML (1997) Contribution of environmental isotopes to the knowledge of complex hydrologic systems. A case study: Sierra de Gador (SE Spain). Earth Surface Proc Landforms 22:1157–1168CrossRefGoogle Scholar
  43. Vandenschrick G, van Wesemael B, Frot E, Pulido-Bosch A, Molina L, Stievenard M, Souchez R (2002) Using stable isotope analysis (δD-δ18O) to characterise the regional hydrology of the Sierra de Gádor, south east Spain. J Hydrol 265:43–55CrossRefGoogle Scholar
  44. Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RE (1986) Eddy fluxes of CO2, water vapour and sensible heat over a deciduous forest. Boundary Layer Meteorol 36:71–91CrossRefGoogle Scholar
  45. Vidal S (1994) Sensor for simultaneous moisture and electric conductivity measurement in soils. Spain, Patent 9401681Google Scholar
  46. Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semi-arid environment. Ground Water 33(3):458–468CrossRefGoogle Scholar
  47. Wood WW, Rainwater KA, Thompson DB (1997) Quantifying macropore recharge: examples from a semi-arid area. Ground Water 35(6):1097–1106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Francisco J. Alcalá
    • 1
    • 2
    Email author
  • Yolanda Cantón
    • 3
  • Sergio Contreras
    • 4
  • Ana Were
    • 5
  • Penélope Serrano-Ortiz
    • 6
    • 7
  • Juan Puigdefábregas
    • 2
  • Albert Solé-Benet
    • 2
  • Emilio Custodio
    • 8
    • 9
    • 10
  • Francisco Domingo
    • 2
    • 11
  1. 1.Geo-Systems Centre/CVRM, Instituto Superior TécnicoLisbonPortugal
  2. 2.Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones CientíficasAlmeríaSpain
  3. 3.Departamento de Edafología y Química AgrícolaUniversidad de AlmeríaAlmeríaSpain
  4. 4.Bureau of Economic Geology, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  5. 5.Department of Hydrology and Geo-environmental SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  6. 6.Centro Andaluz de Medio Ambiente (CEAMA)GranadaSpain
  7. 7.Department of EcologyUniversity of AntwerpWilrijkBelgium
  8. 8.Departament d’Enginyería del Terreny, Cartogràfica i GeofísicaUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain
  9. 9.International Centre for Groundwater Hydrology (FCIHS)BarcelonaSpain
  10. 10.Royal Academy of Sciences of Spain (RAC)MadridSpain
  11. 11.Departamento de Biología Vegetal y EcologíaUniversidad de AlmeríaAlmeríaSpain

Personalised recommendations