Environmental Earth Sciences

, Volume 60, Issue 2, pp 325–334 | Cite as

Novel MVA tools to track CO2 seepage, tested at the ZERT controlled release site in Bozeman, MT

  • J. E. Fessenden
  • S. M. Clegg
  • T. A. Rahn
  • S. D. Humphries
  • W. S. Baldridge
Special Issue


Over the past 4 years, controlled field experiments have taken place in Bozeman, MT, USA where pure CO2 has been released at known rates and depths to quantify the detection limits of various monitoring tools and techniques for the use of CO2 seepage detection. As part of this study, new tools engineered at Los Alamos National Laboratory were deployed to determine the sensitivity of these technologies to detect and measure CO2 seepage. These technologies were engineered for above-ground CO2 detection and include laser-based closed path δ13CO2 measurement systems, an O2/CO2 concentration ratio measurement system, and a chamber-based radon detection system. The sensitivity of these technologies to detect CO2 were measured through spatial transects taken perpendicular to the CO2 source and through temporal changes measured diurnally over the course of a 30 day experiment. Results show that the radon system is most sensitive to CO2 detection at the start of the experiment in locations adjacent to the CO2 source. The closed path or in situ δ13CO2 system detected CO2 seepage as far as 2 m away from the source during non-windy periods. The O2/CO2 system detected the CO2 seepage as far as 2 m above-ground and 1 m away from the source. Descriptions of these technologies and an overview of these results are presented.


Geologic carbon sequestration Carbon capture and storage Monitoring verification and accounting Carbon stable isotopes Leak detection 



We thank L. Dobeck for assistance in the field and for all logistical help. We thank L. Spangler for expert leadership of the project and for allowing us to participate in the experiment. This work was funded by the MVA Project (04FE18-09) and the ZERT Project, Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the US Department of Energy under Contract No. DE-AC02-05CH11231.


  1. Amonette JE, Barr JL (2009) Multi-channel auto-dilution system for remote continuous monitoring of high soil-CO2 fluxes Pacific Northwest National Laboratory Report no. PNNL-18229Google Scholar
  2. Bjorklund GC (1980) Frequency-modulation spectroscopy—new method for measuring weak absorptions and dispersions. Optics Lett 5(1):15–17CrossRefGoogle Scholar
  3. Bomse DS, Stanton AC, Silver JA (1992) Frequency modulation and wavelength modulation spectroscopies—comparison of experimental methods using a lead-salt diode-laser. Appl Opt 31(6):718–731CrossRefGoogle Scholar
  4. Buchmann N, Ehleringer JR (1998) CO2 concentration profiles, and carbon and oxygen isotopes in C-3, and C-4 crop canopies. Agric For Meteorol 89(1):45–58CrossRefGoogle Scholar
  5. Chmora SN, Slobodskaya GA, Nichiporovich AA (1983) The oxygen carbon dioxide ratio in the gas exchange of 3 carbon pathway and 4 carbon pathway and plant leaves with normal or low oxygen concentration. Fiziologiya Rastenii (Moscow) 30(5):906–914Google Scholar
  6. Drewitt G, Wagner-Riddle C, Warland J (2009) Isotopic CO2 measurements of soil respiration over conventional and no-till plots in fall and spring. Agric For Meteorol 149(3–4):614–622CrossRefGoogle Scholar
  7. Fessenden JE, Ehleringer JR (2003) Temporal variation in delta13C of ecosystem respiration in the Pacific Northwest: links to moisture stress. Oecologia 136(1):129–136CrossRefGoogle Scholar
  8. Flanagan LB, Kubien DS, Ehleringer JR (1999) Spatial and temporal variation in the carbon and oxygen stable isotope ratio of respired CO2 in a boreal forest ecosystem. Tellus B Chem Phys Meteorol 51B(2):367–384CrossRefGoogle Scholar
  9. Gast H, Stolz W (1982) Correlation between meteorological conditions and the Rn concentration of soil air. Isotopenpraxis 18(7):250–253CrossRefGoogle Scholar
  10. Gilfillan S, Ballentine C, Holland G, Blagburn D, Lollar BS et al (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim Cosmochim Acta 72(4):1174–1198CrossRefGoogle Scholar
  11. Hall GE, North SW (2000) Transient laser frequency modulation spectroscopy. Ann Rev Phys Chem 51(2):243–274CrossRefGoogle Scholar
  12. Humphries SD, Nehrir AR, Keith CJ, Repasky KS, Dobeck LM, Carlsten JL, Spangler LH (2008) Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility. Appl Opt 47(4):548–555CrossRefGoogle Scholar
  13. Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Brikholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson KS (2009) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana, Environ Earth Sci. doi: 10.1007/s12665-009-0401-1
  14. Langendorfer U, Cuntz M, Ciais P, Peylin P, Bariac T et al (2002) Modelling of biospheric CO2 gross fluxes via oxygen isotopes in a spruce forest canopy: a Rn-222 calibrated box model approach. Tellus B Chem Phys Meteorol 54(5):476–496CrossRefGoogle Scholar
  15. Lewicki JL, Oldenburg CM, Dobeck L, Spangler L (2007) CO2 leakage during two shallow subsurface CO2 releases. Geophys Res Lett 34:L24402. doi: 10.1029/2007GL032047 CrossRefGoogle Scholar
  16. Lewicki JL, Hilley GE, Fischer ML, Pan L, Oldenburg CM, Dobeck L, Spangler L (2009a) Eddy covariance observations of surface CO2 leakage during shallow subsurface CO2 releases. J Geophys Res 114:D12302. doi: 10.1029/2008JD011297 CrossRefGoogle Scholar
  17. Lewicki JL, Hilley GE, Dobeck L, Spangler L (2009b) Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release. Environ Earth Sci. doi: 10.1007/s12665-009-0400-2
  18. Manning AC, Keeling RF, Severinhaus JP (1999) Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer. Global Biogeochem Cycl 13(4):1107–1115CrossRefGoogle Scholar
  19. Masiello CA, Gallagher ME, Randerson JT, Deco RM, Chadwick OA et al (2008) Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. J Geophys Res Biogeosci 113(G3):G03010CrossRefGoogle Scholar
  20. Mercer DJ, Baldridge WS, Ianakiev KD, Macarthur DW, Chung K, Elkins LJ, Switzer EE (2002) Progress toward a radon detector using pulse-mode and current-mode ion collection. In: Proceedings of institute of nuclear materials management, 43rd annual institute of nuclear management meeting, Orlando, FL, June 23–27Google Scholar
  21. Miller JB, Yakir D, White JWD, Tans PP (1999) Measurement of O-18/O-16 in the soil-atmosphere CO2 flux. Global Biogeochem Cycl 13(3):761–774CrossRefGoogle Scholar
  22. Nickerson N, Risk D (2009) Keeling plots are non-linear in non-steady state diffusive environments. Geophys Res Lett 36(8):L08401CrossRefGoogle Scholar
  23. Pendall E, Del Grosso S, King JY, LeCain DR, Milchunas DG et al (2003) Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochem Cycl 17(2):1046–1054CrossRefGoogle Scholar
  24. Randerson JT, Masiello CA, Still CJ, Rahn T, Poorter H et al (2006) Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Global Change Biol 12(2):260–271CrossRefGoogle Scholar
  25. Seibt U, Brand WA, Heimann M, Lloyd J, Severinghaus JP, Wingate L (2004) Observations of O2: CO2 exchange ratios during ecosystem gas exchange. Global Biogeochem Cycl 18(4):GB4024CrossRefGoogle Scholar
  26. Silver JA (1992) Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods. Appl. Optics 31(6):707–717CrossRefGoogle Scholar
  27. Singh M, Ramola RC, Singh S, Virk HS (1990) Influence of moisture content on radon diffusion in soil. Nuclear Geophys 4(4):479–482Google Scholar
  28. Spangler LH, Dobeck LM, Repasky K et al. (2009) A controlled field pilot in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci. doi: 10.1007/s12665-009-0400-2
  29. Steinitz G, Piatibratova O, Barosa SM (2007) Radon daily signals in the elat granite, southern Arava, Israel. J Geophys Res 112 (B10):B10211-1-19Google Scholar
  30. Stephens BB, Bakwin PS, Tans PP, Teclaw RM et al (2007) Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations. J Atm Ocean Tech 24(1):82–94CrossRefGoogle Scholar
  31. U.S. Department of Energy (2007) Carbon sequestration technology roadmap and program plan. USDOE, Washington, DCGoogle Scholar
  32. Wells AW, Strazisar B, Diehl JR, Veloski G (2009) Atmospheric tracer monitoring and surface plume development at the ZERT pilot test in Bozeman, Montana, USA. Environ Earth Sci. doi: 10.1007/s12665-009-0371-3
  33. Werle P (1998) A review of recent advances in semiconductor laser based gas monitors. Spectrochimica Acta A 54(2):197–236CrossRefGoogle Scholar
  34. Wielopolski L, Mitra S (2009) Near-surface soil carbon detection for monitoring CO2 seepage from a geological reservoir. Environ Earth Sci. doi: 10.1007/s12665-009-0397-6
  35. Wilkening MH, Hand JE (1960) Radon flux at the Earth-air interface. J Geophys Res 65(10):3367–3370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. E. Fessenden
    • 1
  • S. M. Clegg
    • 2
  • T. A. Rahn
    • 1
  • S. D. Humphries
    • 2
  • W. S. Baldridge
    • 1
  1. 1.Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Chemistry DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations