Advertisement

Environmental Earth Sciences

, Volume 60, Issue 6, pp 1227–1243 | Cite as

Landslide susceptibility and hazard assessment in San Ramón Ravine, Santiago de Chile, from an engineering geological approach

  • Marisol LaraEmail author
  • Sergio A. Sepúlveda
Original Article

Abstract

Debris flows and soil and rock slides are among the main geological hazards in the mountain foothills of Central Chile. Geological risk associated with the development of landslides, especially debris flows triggered in the basins of ravines that drain into the capital city, Santiago, has increased in time due to accelerated urban expansion. A landslide hazard evaluation in the San Ramón Ravine, located within the foothills of Santiago is presented. Hazard evaluation is based on a methodology that combines the determination of landslide susceptibility calculated by integration of conditioning factors, with the assessment of slope failure and runout probabilities incorporating geotechnical engineering approaches. The methodology is appropriate for medium or subregional scale studies with limited data. The results show that in San Ramón Ravine the landslide hazard consists mainly of debris flows, rock block slides, rock falls and shallow soil slides. Among these, debris flows are the most important due to the urban area that can be affected. Other case studies show that the method can be used in other regions with minor adaptations for territorial planning or for engineering and environmental purposes.

Keywords

Landslide Susceptibility Hazard 

Notes

Acknowledgements

This study was funded by the Fundación Andes Project C-14060/14. The authors acknowledge S. Rebolledo, R. Verdugo and J. A. Naranjo for their valuable comments and suggestions during the study, and J. Le Roux and B. Townley for the review of the manuscript. We thank the National Forestry Corporation (Conaf) for their support during field work, and the HidroAysén Company for authorizing the inclusion of results from the Aysen Hydroelectric Project.

References

  1. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  2. Arenas M, Naranjo J, Clavero J, Lara L (2008) Earthquake-induced landslides susceptibility mapping for crisis management. In: Actas XVII Congreso Geológico Argentino, vol. 1, pp 255, San Salvador de Jujuy, ArgentinaGoogle Scholar
  3. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31CrossRefGoogle Scholar
  4. Borde J (1966) Les Andes de Santiago et Leur Avant Pays (Geomorphological study of the Andes forearc of Santiago). Union Française d’Impresion, BordeauxGoogle Scholar
  5. Brüggen J (1950) Fundamentos de la Geología de Chile (Fundamentals of the geology of Chile). Instituto Geográfico Militar, ChileGoogle Scholar
  6. Charrier R, Munizaga F (1979) Edades K-Ar de rocas volcánicas del area cordilleana del río Cachapoal, Chile (34°15′ ) (K-Ar ages of Cenozoic volcanics from the Cordilleran area of the Cachapoal River, Chile (34°15′S)). Revista Geológica de Chile 17:41–51Google Scholar
  7. Chen CH, Ke CC, Wang CL (2009) A back-propagation network for the assessment of susceptibility rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan. Environ Geol 57:723–733CrossRefGoogle Scholar
  8. Farías M (2007) Tectónica y erosión en la evolución del relieve de Los Andes de Chile Central durante el Neogeno (Tectonic and erosion on the evolution of Los Andes of Central Chile relief during the Neogene). Sc.D. Thesis, Department of Geology, University of ChileGoogle Scholar
  9. Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27CrossRefGoogle Scholar
  10. Harp EL, Reid ME, Mackenna JP, Michael JA (2009) Mapping of hazard from rainfall-triggered landslides in developing countries: examples from Honduras and Micronesia. Eng Geol 104:295–311CrossRefGoogle Scholar
  11. Instituto Nacional de Normalización (1996) Diseño Sísmico de Edificios [norma técnica NCh 433] (Seismic building design [technical code NCh 433]). Chile, Santiago, p 41Google Scholar
  12. Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101:631–642CrossRefGoogle Scholar
  13. Lara M (2007) Metodología para la evaluación y zonificación de peligro de remociones en masa con aplicación en Quebrada San Ramón, Santiago Oriente, Región Metropolitana. (Methodology for landslide hazard assessment and zoning with application in San Ramón Ravine, eastern Santiago, Región Metropolitana). MSc Thesis, University of ChileGoogle Scholar
  14. Lara M, Sepúlveda SA, Rebolledo S (2006) Geología y geotecnia para la evaluación de peligro de remociones en masa en Quebrada San Ramón, Santiago Oriente. (Geology and geotechnics for landslide hazard assessment in San Ramón Ravine, eastern Santiago). In: Actas XI Congreso Geológico Chileno, vol 2, Antofagasta, Chile, pp 59–62Google Scholar
  15. Leyton F, Ruiz S, Sepúlveda SA (2009) Reevaluación del peligro sísmico probabilístico en Chile central (Re-evaluation of the probabilistic seismic hazard in central Chile) (submitted)Google Scholar
  16. Miles SB, Keefer DK (2000) Evaluation of seismic slope-performance models using a regional case study. Environ Eng Geosci 6:25–39Google Scholar
  17. Nandi A, Shakoor A (2006) Preparation of a landslide susceptibility map of Summit County, Ohio, USA, using numerical models. Paper presented at the 10th International Association for Engineering Geology Congress (IAEG), Nottingham, United Kingdom, 6–10 September 2006, Paper 660Google Scholar
  18. Naranjo JA, Varela J (1996) Flujos de detritos y barro que afectaron el sector oriente de Santiago el 3 de mayo de 1993. (Debris and mud flows that affected the Santiago eastern zone on May 3rd 1993). Servicio Nacional de Geología y Minería, Boletín No. 47, SantiagoGoogle Scholar
  19. Naranjo JA, Arenas M, Clavero J, Muñoz O (2009) Efectos de la crisis sísmica de Aisén 2007. Andean Geol 36(1):137–145Google Scholar
  20. Rauld R (2002) Análisis morfoestructural del frente cordillerano Santiago Oriente entre el río Mapocho y la Quebrada de Macul. (Morphostructural analysis of the Cordilleran front in eastern Santiago between the Mapocho River and the Macul Ravine). Dissertation, University of ChileGoogle Scholar
  21. Rauld R, Vargas G, Armijo R, Ormeño A, Valderas C, Campos J (2006). Cuantificación de escarpes de falla y deformación reciente en el frente cordillerano de Santiago (Fault scarps and recent deformation assessment in the Santiago Cordilleran front). Actas XI Congreso Geológico Chileno, Antofagasta, Chile, 1:447–450Google Scholar
  22. Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the southern oscillation. Int J Climatol 11:63–76CrossRefGoogle Scholar
  23. Schachter P (2008) Evaluación de la susceptibilidad de remociones en msa en el sector nororiente de la Cuenca de Santiago mediante métodos estadísticos multivariados (Landslide susceptibility assessment in the northwestern area of Santiago basin using multivariate statistical methods). Dissertation, University of ChileGoogle Scholar
  24. Sepúlveda SA (2000) Methodology for debris flow hazard evaluation in mountainous environments. Comunicaciones 51:3–18Google Scholar
  25. Sepúlveda SA, Padilla C (2008) Rain-induced debris and mud flow triggering factors assessment in the Santiago Cordilleran foothills, Central Chile. Nat Hazards. doi: 10.1007/s11069-007-9210-6
  26. Sepúlveda SA, Rebolledo S, Vargas G (2006) Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response. Quat Int 158:83–95CrossRefGoogle Scholar
  27. Spizzichino D, Falconi L, Delmonaco G, Margottini C, Puglisi C (2004) Integrated approach for landslide risk assessment of Craco village (Italy). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. 1:237–242Google Scholar
  28. Stern C, Amini H, Charrier R, Godoy E, Hervé F, Varela J (1984) Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the Río Cachapoal (Chile) and the Río Yaucha and Río Papagayos (Argentina). Rev Geol Chile 23:39–52Google Scholar
  29. Stumpf A (2008). Landslide susceptibility assessment in Central Chile. Application of a probabilistic, GIS-based method at eastern Santiago de Chile and the bordering Andes. Diploma dissertation, Technische Universitat DresdenGoogle Scholar
  30. Thiele R (1980) Geología de la Hoja Santiago, Región Metropolitana (Geology of the Santiago Sheet, Región Metropolitana). Carta Geológica de Chile No 39, Instituto de Investigaciones Geológicas, SantiagoGoogle Scholar
  31. Thomas H (1958) Geología de la Cordillera de la Costa entre el valle de La Ligua y la cuesta Barriga (Geology of the Coastal Cordillera between the La Ligua Valley and Barriga Hill). Instituto de Investigaciones Geológicas, Santiago Bulletin 2Google Scholar
  32. Universidad de Chile (2007) Línea de Base de Areas de Riesgo, Proyecto Hidroeléctrico Aysén (Risk Areas Baseline, Aysén Hydroelectrical Project). Department of Geology, University of Chile (unpublished report)Google Scholar
  33. Varnes DJ, International Association for Engineering Geology (IAEG) (1984) Landslide hazard zonation: a review of principles and practice. David J. Varnes and the International Association of Engineering Geology Comission on Landslides and Other Mass Movements on Slopes, UNESCO, ParisGoogle Scholar
  34. Wall R, Gana P, Gutiérrez A (1996) Mapa Geológico del Área de San Antonio-Melipilla. (Geological map of the San Antonio-Melipilla area). Servicio Nacional de Geología y Minería, Mapas Geológicos, No 2Google Scholar
  35. Yalcin A (2007) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivaiarte statistics in Ardesen (Turkey): comparisons of results and confirmations. Elsevier, Catena 72:1–12Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departamento de GeologíaUniversidad de ChileSantiagoChile

Personalised recommendations