Advertisement

Environmental Earth Sciences

, Volume 60, Issue 4, pp 829–836 | Cite as

Diagnostics, deterioration and provenance of stone materials from the Jefferson Page tomb (Non-Catholic Cemetery of Rome, Italy)

  • Domenico MirielloEmail author
  • Marco Malagodi
  • Silvestro Antonio Ruffolo
  • Mauro Francesco La Russa
  • Gino Mirocle Crisci
  • Antonino Pezzino
  • Rita Galluccio
  • Donatella Barca
  • Elisa Marasco
Original Article

Abstract

The monumental tomb of Jefferson Page, an officer in the American Navy, was built in 1899 and is located in the Non-Catholic Cemetery of Rome (Italy). This study presents complementary diagnostic studies characterizing the stone of the tomb and the weathering and decay phenomena it has undergone. The monument is made of a single type of whitish marble, variously veined and often covered with black patinas. Petrographic, isotopic and LA-ICP-MS analyses attribute the marble to the Carrara district. SEM/EDS and microbiological analyses indicate that the black patinas are due to cyanobacterial autotrophic and fungin heterotrophic colonization. Fourier-transform infrared spectroscopy revealed the presence of organic material on some portions of the tomb, due to undocumented restoration carried out with a mixture of marble powder and a polyester resin.

Keywords

Marble Provenance Black patina Fungi Decay Carrara MGS FT-IR 

Notes

Acknowledgments

The authors would like to thank the Directress and the Scientific Committee of the Non-Catholic Cemetery of Rome for authorization to carry out this work, and for the great sensitivity shown as regards the restoration of the Jefferson Page tomb. Particular thanks go to the Page family, for having made this study possible.

References

  1. Beck-Friis J (1963) Il cimitero acattolico di Roma. Il cimitero degli artisti e dei poeti. Allhelm, MalmöGoogle Scholar
  2. Capedri S, Venturelli G, Photiades A (2004) Accessory minerals and δ18O and δ13C of marbles from the Mediterranean area. J Cult Herit 5:27–47. doi: 10.1016/j.culher.2003.03.003 CrossRefGoogle Scholar
  3. Fryer BJ, Jackson SE, Longerich HP (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the Earth sciences. Can Mineral 33:303–312Google Scholar
  4. Gunther D, Heinrich CA (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium–argon mixtures as aerosol carrier. J Anal Atom Spectrom 14:1363–1368. doi: 10.1039/a901648a CrossRefGoogle Scholar
  5. Kyser TK, O’Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23. doi: 10.1007/BF01161498 CrossRefGoogle Scholar
  6. Marini P, Bellopede R (2007) The influence of the climatic factors on the decay of marbles: an experimental study. Am J Environ Sci 3:143–150CrossRefGoogle Scholar
  7. Metallo MC, Poli AA, Diana M, Persia F, Cirillo M (1995) Air pollution loads on historical monuments: an air quality model application to the marble Arch of Titus in Rome. Sci Total Environ 171:163–172. doi: 10.1016/0048-9697(95)04690-0 CrossRefGoogle Scholar
  8. Moens L, Roos P, De Rudder J, De Paepe P, Van Hende J, Waelkens M (1988) A multi-method approach to the identification of white marbles used in antique artefacts. In: Herz N, Waelkens M (eds) Classical marble: geochemistry, technology, trade. Kluwer, Dordrecht, pp 243–250Google Scholar
  9. Normal-25/87 (1987) Microflora Autotrofa ed Eterotrofa: Tecniche di isolamento e di mantenimento in Coltura Pura. CNR, RomeGoogle Scholar
  10. Normal-9/88 (1988) Microflora Autotrofa ed Eterotrofa: Tecniche di Isolamento in Coltura. CNR, RomeGoogle Scholar
  11. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett J Geostand Geoanal 21:115–144CrossRefGoogle Scholar
  12. Perrino C, Canepari S, Cardarelli E (2008a) Inorganic constituents of urban air pollution in the Lazio region (Central Italy). Environ Monit Assess 136:69–86CrossRefGoogle Scholar
  13. Perrino C, Catrambone M, Pietrodangelo A (2008b) Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: a case study in Rome, Italy. Environ Int 34:621–628CrossRefGoogle Scholar
  14. Pitt JI, Hocking AD (1985) Fungi and food spoilage. Academic Press, SydneyGoogle Scholar
  15. Royer-Carfagni GF (1999) On the thermal degradation of marble. Int J Rock Mech Min 36:119–126CrossRefGoogle Scholar
  16. Siegesmund S, Ruedrich J, Weiss T (2004) Jewish Cemetery in Hamburg Altona (Germany): state of marble deterioration and provenance. In: Proceedings 6 Int Conf on at the Mediterranean Sea, Lisboa, pp 207–210Google Scholar
  17. UNI-10923 (2001) Beni culturali, Materiali lapidei naturali ed artificiali, Allestimento di preparati biologici per l’osservazione al microscopio ottico. UNI, MilanoGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Domenico Miriello
    • 1
    Email author
  • Marco Malagodi
    • 1
  • Silvestro Antonio Ruffolo
    • 1
  • Mauro Francesco La Russa
    • 1
  • Gino Mirocle Crisci
    • 1
  • Antonino Pezzino
    • 2
  • Rita Galluccio
    • 3
  • Donatella Barca
    • 1
  • Elisa Marasco
    • 1
  1. 1.Department of Earth SciencesUniversity of CalabriaArcavacata di Rende (CS)Italy
  2. 2.Department of GeologyUniversity of CataniaCataniaItaly
  3. 3.Non-Catholic Cemetery of RomeRomeItaly

Personalised recommendations