Environmental Earth Sciences

, Volume 59, Issue 7, pp 1515–1524 | Cite as

Anthropogenic subsidence in the Mexicali Valley, Baja California, Mexico, and slip on the Saltillo fault

  • Ewa Glowacka
  • Olga Sarychikhina
  • Francisco Suárez
  • F. Alejandro Nava
  • Robert Mellors
Original Article

Abstract

Deep fluid extraction in the Cerro Prieto geothermal field (CPGF) has caused subsidence and induced slip on tectonic faults in the Mexicali Valley (Baja California, Mexico). The Mexicali Valley is located in the southern part of the Salton Trough, at the boundary between the Pacific and North American plates. The Valley is characterized by being a zone of continuous tectonic deformation, geothermal activity, and seismicity. Within the Cerro Prieto pull-apart basin, seismicity is concentrated mainly in swarms, while strong earthquakes have occurred in the Imperial and Cerro Prieto transform faults, that are the eastern and western bound of the basin. Since 1973, fluid extraction at the CPGF has influenced deformation in the area, accelerating the subsidence and causing rupture (frequently as vertical slip or creep) on the surface traces of tectonic faults. Both subsidence and fault slip are causing damage to infrastructure like roads, railroad tracks, irrigation channels, and agricultural fields. Currently, accelerated extraction in the eastern part of CPGF has shifted eastwards the area of most pronounced subsidence rate; this accelerated subsidence can be observed at the Saltillo fault, a southern branch of the Imperial fault in the Mexicali Valley. Published leveling data, together with field data from geological surveys, geotechnical instruments, and new InSAR images were used to model the observed deformation in the area in terms of fluid extraction. Since the electricity production in the CPGF is an indispensable part of Baja California economy, extraction is sure to continue and may probably increase, so that the problem of damages caused by subsidence will likely increase in the future.

Keywords

Cerro Prieto Geothermal field Fault creep Creep events Subsidence modeling 

References

  1. Allis RG, Zhan X, Clotworthy A (1998) Predicting future subsidence at Wairakei field, New Zealand. Geotherm Resour Counc Trans 22:43–47Google Scholar
  2. Bennett RA, Rodi W, Reilinger RE (1996) Global positioning system constrains on fault slip rates in Southern California and Northern Baja, Mexico. J Geophys Res 101(B10):21943–21960CrossRefGoogle Scholar
  3. Bilham R, Behr J (1992) A two layer model for seismic slip on the Superstition Hills Fault, California. BSSA 82(3):1223–1235Google Scholar
  4. Camacho Ibarra EG (2006) Análisis de la deformación vertical del Terreno en la región de Confluencia del Sistemas de Fallas Cerro Prieto—Imperial en el Periodo 1962–2001. Tesís de Maestría, CICESE, p 135Google Scholar
  5. Carnec C, Fabriol H (1999) Monitoring and modeling land subsidence at the Cerro Prieto geothermal field, Baja California, Mexico, using SAR interferometry. Geophys Res Lett 26(9):1211–1214CrossRefGoogle Scholar
  6. CFE (2006) Cerro Prieto geothermal field. CFE, MexicoGoogle Scholar
  7. Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A 18:338–351CrossRefGoogle Scholar
  8. Contreras J, Martin-Barajas A, Herguera JC (2002) Subsidence and Extensión Rates of Laguna Salada Basin, Northeastern Baja California, Mexico. In: Eos Trans. AGU 83 (47), Fall. Meet. Supll., Abstract T52C–1223, San FranciscoGoogle Scholar
  9. Davis PM (1986) Surface deformation due to inflation of an arbitrary oriented triaxial ellipsoidal cavity in an elastic half-space, with references to Kilauea Volcano, Hawaii. J Geophys Res 91(B7):7429–7438CrossRefGoogle Scholar
  10. Fialko Y, Simons M (2000) Deformation and seismicity in the Coso geothermal area, Inyo Country, California: observation and modeling using satellite radar interferometry. J Geophys Res 195(B9):21781–21793CrossRefGoogle Scholar
  11. Glowacka E (1996) Major earthquake in Mexicali valley, Mexico, and fluid extraction at Cerro Prieto geothermal field. Bull Seism Soc Am 86:93–105Google Scholar
  12. Glowacka E, Gonzalez J, Fabriol H (1999) Recent vertical deformation in Mexicali Valley and its relationship with tectonics, seismcity and fluid operation in the Cerro Prieto geothermal field. Pure Appl Geophys 156:591–614CrossRefGoogle Scholar
  13. Glowacka E, Nava FA, Diaz de Cossio G, Farfán F (2001) Monitoring the response of the imperial fault to fluid extraction in the Cerro Prieto geothermal field, Baja California, Mexico. In: Van Aswegen G, Durrheim RJ, Ortlepp WD (eds) Rockbursts and Seismcity in Mines—RASiM 5, pp 143–147Google Scholar
  14. Glowacka E, Nava FA, Diaz de Cossio G, Wong V, Farfan F (2002) Fault slip, seismicity and deformation in the Mexicali Valley (B.C., Mexico) after the 1999 Hector Mine Earthquake (M = 7.1). Bull Seism Soc Am 92(4):1290–1299CrossRefGoogle Scholar
  15. Glowacka E, Sarychikhina O, Nava AF (2005) Subsidence and stress change in the Cerro Prieto geothermal field, B.C., Mexico. Pure Appl Geophys 162:2095–2110CrossRefGoogle Scholar
  16. Glowacka E, Sarychikhina O, Suarez F, Mendoza R, Nava F (2006) Estudio geologico para definir la zona de hundimiento con el fin de relocalización del canal Nuevo Delta en el Valle de Mexicali. Reporte Tecnico. CICESE, Mexico, p 505Google Scholar
  17. González JJ, Glowacka E, Suárez F, Quiñónez G, Guzmán M, Castro JM, Riviera F, Félix MG (1998) Movimiento reciente de la falla Imperial, Mexicali, B. C., Divulgare, Ciencia para todos, Mexicali, B. C. 6 (22):4–15Google Scholar
  18. Hanssen RF (2001) Radar interferometry. Kluwer, NetherlandsGoogle Scholar
  19. Johnson NM, Officer CB, Opdyke ND, Woodard GD, Zeitler PK, Lindsay EH (1983) Rates of late Cenozoic Tectonism in the Vallecito–Fish Creek basin. Geology 11:664–667CrossRefGoogle Scholar
  20. Kampes B, Hanssen R, Perski Z (2003) Radar interferometry with public domain tools. In: Proceedings of fringe 2003: 1–5 December, Frascati, ItalyGoogle Scholar
  21. King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84(3):935–953Google Scholar
  22. Lippmann MJ, Truesdell AH, Mañón AM, Halfman SE (1991) A review of the hydrogeologic-geochemical model for Cerro Prieto. Geothermics 20:39–52CrossRefGoogle Scholar
  23. Lira H (2005) Actualización del modelo geológico conceptual de yacimiento geotérmico de Cerro Prieto, B.C. Geotermia 18:37–46Google Scholar
  24. Lira H, Arellano JF (1997) Resultados de la nivelación de precisión realizada en 1997, en el campo geotérmico Cerro Prieto (Informe técnico RE 07/97, CFE 1997)Google Scholar
  25. Magistrale H (2002) The relation of Southern San Jacinto fault zone to the Imperial and Cerro Prieto faults. Geol Soc Am Special Paper 365:271–178Google Scholar
  26. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformation of the ground surface around them. Bull Earthquake Res Inst Univ Tokyo 36:99–134Google Scholar
  27. Mossop AP, Segall P (1997) Subsidence at the Geysers geothermal field, N. California from a comparison of GPS and leveling surveys. Geophys Res Lett 24:1839–1842CrossRefGoogle Scholar
  28. Nava FA, Glowacka E (1999) Fault slip triggering, healing, and viscoelastic afterworking in sediments in the Mexicali_Imperial Valley. Pure Appl Geophys 156:615–629CrossRefGoogle Scholar
  29. Ocampo-Diaz J (2005) Cerro Prieto IV, the newest power plant in Cerro Prieto geothermal field. In: Proceedings of thirtieth workshop on geothermal reservoir engineering, Stanford UniversityGoogle Scholar
  30. Pennington W, Davis SD, Carlson SM, Dupree J, Ewing TE (1986) The evolution of seismic barriers and asperities caused by the depressuring of fault planes in oil and gas of South Texas. BSSA 76(4):939–948Google Scholar
  31. Sarychikhina O (2003) Modelación de subsidencia en el campo geotérmico Cerro Prieto. Tesis de Maestría, CICESE, MéxicoGoogle Scholar
  32. Sarychikhina O, Mellors R, Glowacka E (2007a) Aplication of InSAR to the study of ground deformation in the Mexicali Valley, B.C., MEXICO. In: Proceedings of Envisat symposium, Montreux, Switzerland, p 6. Postsymposium CDGoogle Scholar
  33. Sarychikhina O, Glowacka E, Mellors R (2007b) Preliminary results of the surface deformation study, using differential InSAR technique at the Cerro Prieto Geothermal Field, B.C., México. GRC meeting, Reno 2007, proceedings CD, pp 581–584Google Scholar
  34. Scharoo R, Visser P (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J Geophys Res 103(C4):8113–8127CrossRefGoogle Scholar
  35. Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17:942–946CrossRefGoogle Scholar
  36. Sheng Z, Helm DC (1998) Multiple Steps of Earth Fissuring Caused by Ground Water Withdrawal. In: Borchers JW (ed) Tectonic controls of geomorphic processes in land subsidence area. Land Subsidence. Star Publishing Company, pp 149–154Google Scholar
  37. Suarez-Vidal F, Mendoza-Borunda R, Naffarrete-Zamarripa LM, Ramirez J, Glowacka E (2008) Shape and dimensions of the Cerro Prieto pull-apart basin, Mexicali, Baja California, México, based on the regional seismic record and surface structures. Int Geol Rev 50(7):636–649CrossRefGoogle Scholar
  38. Talwani P, Acree S (1984/1985) Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure Appl Geophys 122:947–965Google Scholar
  39. Toda S, Stein RS, Reasenberg PA, Dieterich JH (1998) Stress transferred by the Mw = 6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. J Geophys Res 103:24543–24565CrossRefGoogle Scholar
  40. Truesdell AH, Lippmann MJ (1990) Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto Geothermal system. Geotherm Resour Counc Trans 14:735–741Google Scholar
  41. Truesdell AH, Lippmann MJ, Gutiérrez PH, de León JV (1998) The Importance of natural fluid recharge to the sustainability of the Cerro Prieto resource. Geotherm Resour Counc Trans 22:529–536Google Scholar
  42. Velasco J (1963) Levantamieno gravimétrico, zona geotérmica de Mexicali, Baja California, Consejo de Recursos Minerales. Technical report, p 55Google Scholar
  43. Wesson RL (1988) Dynamics of fault creep. J Geophys Res 93:8929–8951CrossRefGoogle Scholar
  44. Yang X, Davis PM (1986) Deformation due to a rectangular tensional crack in an elastic half-space. Bull Seismol Soc Am 76(3):865–881Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ewa Glowacka
    • 1
  • Olga Sarychikhina
    • 1
  • Francisco Suárez
    • 2
  • F. Alejandro Nava
    • 1
  • Robert Mellors
    • 3
  1. 1.Department of SeismologyCICESEEnsenadaMexico
  2. 2.Department of GeologyCICESEEnsenadaMexico
  3. 3.Department of GeologySDSUSan DiegoUSA

Personalised recommendations