Environmental Earth Sciences

, Volume 59, Issue 7, pp 1475–1484 | Cite as

Mass balance simulation and principal components analysis applied to groundwater resources: Essaouira basin (Morocco)

  • Paula Galego Fernandes
  • Paula M. Carreira
  • Mohammed Bahir
Original Article


The water resources of the Essaouira coastal basin (west of Marrakesh) are characteristic of a semi-arid climate and are severely impacted by the climate in terms of quantity and quality. Considering the importance of the Essaouira aquifer in the groundwater supply of a vast region (nearly 1,200 km2), a research study was conducted in order to better understand groundwater evolution in this aquifer system. It is a coastal aquifer located on the Atlantic coastline, southern Morocco, and salinization problems have been reported. Covering the Palaeozoic bedrock, the sedimentary series range from the Triassic to the Quaternary. Besides the possibility of seawater intrusion problems, the geological structures delineate a syncline bordered by the Tidzi diapir (of Triassic age) outcropping to the east and south. This is a recharge area for the aquifer, whereas the main groundwater flow direction is from SE to NW towards the Atlantic Ocean. In spite of the occurrence of calcareous and dolomitic levels, all waters in the Essaouira basin are of the Na–Cl-type. Based on a range of experimental methodologies, combined with PCA and geochemical modelling, it was possible to identify the mineralization processes occurring in the groundwater system, and the importance of the water–rock interaction in the water chemistry. Scenarios were tested using a simple mass balance model through the PHREEQC programme. The reaction path was assumed to be such that waters observed at shallow depths evolved to more mineralized waters. An important contribution of water–rock interaction in groundwater mineralization was found, corroborating the influence of preferential recharge from the Tidzi diapir in the water’s signature. Anthropogenic contamination was also identified and could lead to serious problems with groundwater degradation in the near future, in a country with scarce water resources.


Essaouira basin aquifer Hydrogeochemistry Mass balance model Principal component analysis 



The authors would like to thank the Foundation for Science and Technology (FCT) and GRICES for their contribution to the development of cooperation between Portugal and Morocco through the Instituto Tecnologico e Nuclear and Faculté des Sciences Semlalia. Also, the authors would like to thank Doutor Christopher Ian Burbidge for the English review.


  1. Agoumi A (1999) Introduction à la problématique des changements climatiques (Introduction to the climate changes problem). Projet magrébin sur les changements climatiques RAB/94/G31: SOMIGRAF, p 98Google Scholar
  2. Anderson TW (1984) An introduction to multivariate statistical analysis. Wiley, New York, p 675Google Scholar
  3. Bahir M, Jalal M, Mennani A (2001) Pollution nitratée des eaux souterraines du bassin synclinal d’Essaouira (Groundwater pollution by nitrates of the Essaouira synclinal basin). J Environ Hydrol 9:1–9Google Scholar
  4. Bouatmani R, Medina F, Ait Salem A, Hoepffne C (2003) Thin-skin tectonics in the Essaouira Basin (western High Atlas, Morocco): evidence from seismic interpretation and modelling. J Afr Earth Sci 37(1–2):25–34CrossRefGoogle Scholar
  5. Broughton P, Trepanier A (1993) Hydrocarbon generation in the Essaouira basin of western Morocco. Bull Am Assoc Petrol Geol 77:999–1015Google Scholar
  6. Davis JC (1984) Statistics and data analysis in geology. Wiley, New York, p 646Google Scholar
  7. Duffaud F, Brun L, Planchot B (1966) Bassin du sud-ouest marocain (SW Morocco basin). In: Bassin sédimentaire du littoral africain. Services Géologique Africain, Paris, pp 5–12Google Scholar
  8. Fekri A (1993) Contribution à l’étude hydrogéologique et hydrogéochimique de la zone synclinale d’Essaouira (Bassin synclinal d’Essaouira) (Contribution to the hydric resources study of the Essaouira synclinal basin (Morocco)). 3rd cycle dissertation, MSc dissertation, Université Cadi Ayyad, p 179Google Scholar
  9. Laaksoharju M, Skarman C, Skarman E (1999) Multivariate mixing and mass balance (M3) calculations: a new tool for decoding hydrogeochemical information. Appl Geochem 14(7):861–871CrossRefGoogle Scholar
  10. Li Y, Wang J, Wu Y, Xu Z, Fu X, Hou G (2007) Mass balance simulation and its application to refining flow field in Binchang area, China. Environ Geol 52(4):739–745CrossRefGoogle Scholar
  11. Mackiewick A, Ratajcak W (1993) Principal components analysis (PCA). Comput Geosci 19(3):303–342CrossRefGoogle Scholar
  12. Medina F (1989) Landsat imagery interpretation of Essaouira bassin (Morocco): comparison with geophysical data and structural implications. J Afr Earth Sci 9(1):69–75CrossRefGoogle Scholar
  13. Mehdi K (1994) Analyse et Synthèse des Études Géologiques Et Géophysiques De La Partie Orientale Du Bassin D’Essaouira (Maroc); Contribution De La Sismique Stratigraphique Et De L’analyse Séquentielle Des Diagraphies À La Reconstitution Paléogéographique Du Bassin (Analysis and synthesis of geological and geophysical studies of Oriental Zone of Essaouira Bassin (Morocco): contibution of seismic stratigraphy and sequential analysis of diagraphy in the basin palaeogeography reconstitution). PhD Thesis, University of Bordeaux I, France, p 300Google Scholar
  14. Melloul AJ (1995) Use of principal components analysis for studying deep aquifers with scarce data: application to the Nubian sandstone aquifer, Egypt and Israel. Hydrogeol J 3(2):19–39CrossRefGoogle Scholar
  15. Melloul A, Collin M (1992) The principal components statistical method as a complementary approach to geochemical methods in quality factor identification: application to the Coastal Plain aquifer of Israel. J Hydrol 140:49–73CrossRefGoogle Scholar
  16. Mennani A, Blavoux V, Bahir M, Bellion Y, Jalal M, Daniel M (2001) Apports des analyses chimiques et isotopiques à la connaissance du fonctionnement des aquifères plio-quaternaire et turonien de la zone synclinale d’Essaouira (Maroc occidental) [Chemistry and isotopes in the Plio-Quaternary and turoniene aquifers functioning knowledge in Essaouira area (Occidental Morocco)]. J Afr Earth Sci 32:819–835CrossRefGoogle Scholar
  17. Michard A (1976) Eléments de géologie marocaine (Elements of Moroco geology). Notes et Mémoires du Service Géologique du Maroc 252, p 408Google Scholar
  18. Parkhust DL, Appello CAJ (1999) User’s guide to Phreeqc (version 2): A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculation. USGS Water-Resources Investigations Report 99-4259, p 309Google Scholar
  19. Plummer LN (1993) Regional groundwater quality. US Geological Survey, pp 199–255Google Scholar
  20. Plummer LN, Parkhurst DL, Thorstenson DC (1983) Development of reaction models for groundwater systems. Geochimica Cosmochimica Acta 47:665–686CrossRefGoogle Scholar
  21. Rajagopal R, Graham T (1989) Expert opinion and groundwater quality protection: the case of nitrate in drinking water. Groundwater 27(6):835–847Google Scholar
  22. Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry, dead of a myth: consequences of geochemical and environmental data. Environ Geol 39:1001–1014CrossRefGoogle Scholar
  23. Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206CrossRefGoogle Scholar
  24. Soiud A (1983) Etude tectonique et microtectonique des injections du Trias bassin d’Essaouira pendant la compression alpine dans l’avant pays atlasique (Maroc) [Tectonics and microtectonique study of injections in Essaouira Triassic basin during the Alpine compression in the country advance towards Atlas (Morocco)]. MSc dissertation, Université de Montpellier, France, p 101Google Scholar
  25. Van Helvoort PJ, Filzmoser P, Van Gaans PFM (2005) Sequential factor analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: an application to a bulk chemical characterization of fluvial deposits (Rhine–Meuse delta, The Netherlands). Appl Geochem 20(12):2233–2251CrossRefGoogle Scholar
  26. WHO (2006) Guidelines for drinking water quality, addendum to vol 1, World Health Organization. ISBN 92 4 154696 4, p 460Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Paula Galego Fernandes
    • 1
  • Paula M. Carreira
    • 1
  • Mohammed Bahir
    • 2
  1. 1.Instituto Tecnológico e NuclearSacavémPortugal
  2. 2.Laboratoire d’HydrogeologieFaculté des Sciences SemlaliaMarrakechMorocco

Personalised recommendations