Journal of Maxillofacial and Oral Surgery

, Volume 8, Issue 4, pp 348–356 | Cite as

Craniofacial surgery, from past pioneers to future promise

  • Derrick C. Wan
  • Matthew D. Kwan
  • Anand Kumar
  • James P. Bradley
  • Michael T. Longaker
Review

Abstract

Objectives

As a surgical subspecialty devoted to restoration of normal facial and calvarial anatomy, craniofacial surgeons must navigate the balance between pathologic states of bone excess and bone deficit. While current techniques employed take root in lessons learned from the success and failure of early pioneers, craniofacial surgery continues to evolve, and novel modalities will undoubtedly arise integrating past and present experiences with future promise to effectively treat craniofacial disorders.

Methods

This review provides an overview of current approaches in craniofacial surgery for treating states of bone excess and deficit, recent advances in our understanding of the molecular and cellular processes underlying craniosynostosis, a pathological state of bone excess, and current research efforts in cellular-based therapies for bone regeneration.

Results

The surgical treatment of bone excess and deficit has evolved to improve both the functional and morphological outcomes of affected patients. Recent progress in elucidating the molecular and cellular mechanisms governing bone formation will be instrumental for developing improved therapies for the treatment of pathological states of bone excess and deficit.

Conclusions

While significant advances have been achieved in craniofacial surgery, improved strategies for addressing states of bone excess and bone deficit in the craniofacial region are needed. Investigations on the biomolecular events involved in craniosynostosis and cellular-based bone tissue engineering may soon be added to the armamentarium of surgeons treating craniofacial dysmorphologies.

Keywords

Craniofacial surgery Craniosynostosis Distraction osteogenesis Bone tissue engineering Fibroblast growth factor Bone morphogenetic protein Transforming growth factor beta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerszten PC, Gerszten E (1995) Intentional cranial deformation: a disappearing form of self-mutilation. Neurosurgery 37(3): 374–381 discussion 381–382PubMedCrossRefGoogle Scholar
  2. 2.
    Gerszten PC (1993) An investigation into the practice of cranial deformation among the pre-Columbian peoples of Northern Chile. Int J Osteoarchaeol 3(2): 87–98CrossRefGoogle Scholar
  3. 3.
    Goodrich JT, Tutino M (2001) An annotated history of craniofacial surgery and intentional cranial deformation. Neurosurg Clin N Am 12(1): 45–68, viiiPubMedGoogle Scholar
  4. 4.
    Broca P (1881) The bone lesions of prehistoric man in France. Paleopathology 360(1)Google Scholar
  5. 5.
    Otto AW (1830) Textbook of Anatomic Pathology. Rucher, Berlin, GermanyGoogle Scholar
  6. 6.
    Virchow R (1851) About Cretinism, namely in France, and about pathologic skull formation. Verh Phys Med Gesellsch Wuerzburg 2: 231–271Google Scholar
  7. 7.
    Lane LC (1892) Pioneer craniectomy for relief of mental imbecility due to premature sutural closure and microcephalus. JAMA 18(2): 49–50Google Scholar
  8. 8.
    Lannelongue O. Craniotomy for microcephaly. Compte Rend Acad Sci 110: 1382–1385Google Scholar
  9. 9.
    LeFort R (1901) Experimental report of mechanical fractures. Revue Chirurgie Paris 23: 208Google Scholar
  10. 10.
    Wolfe SA (1997) The influence of Paul Tessier on our current treatment of facial trauma, both in primary care and in the management of late sequelae. Clin Plast Surg 24(3): 515–518PubMedGoogle Scholar
  11. 11.
    Ortiz-Monasterio F, del Campo AF, Carrillo A (1978) Advancement of the orbits and the midface in one piece, combined with frontal repositioning, for the correction of Crouzon’s deformities. Plast Reconstr Surg 61(4): 507–516PubMedGoogle Scholar
  12. 12.
    Persing JA, Edgerton MT, Jane JA (1989) Scientific foundations and surgical treatment of craniosynostosis. Baltimore: Williams & WilkinsGoogle Scholar
  13. 13.
    Grabb WC, Smith JW, Aston SJ (1991) Plastic surgery. 4th ed. Boston: Little, BrownGoogle Scholar
  14. 14.
    Nacamuli RP, Wan DC, Lenton KA, Longaker MT (2005) New developments in pediatric plastic surgery research. Clin Plast Surg 32(1): 123–136, ix–xPubMedCrossRefGoogle Scholar
  15. 15.
    Lenton KA, Nacamuli RP, Wan DC, et al. (2005) Cranial suture biology. Curr Top Dev Biol 66: 287–328PubMedCrossRefGoogle Scholar
  16. 16.
    Kaufman BA, Muszynski CA, Matthews A, Etter N (2004) The circle of sagittal synostosis surgery. Semin Pediatr Neurol 11(4): 243–248PubMedCrossRefGoogle Scholar
  17. 17.
    Jane JA, Edgerton MT, Futrell JW, Park TS (1978) Immediate correction of sagittal synostosis. J Neurosurg 49(5): 705–710PubMedCrossRefGoogle Scholar
  18. 18.
    Vollmer DG, Jane JA, Park TS, Persing JA (1984) Variants of sagittal synostosis: strategies for surgical correction. J Neurosurg 61(3): 557–562PubMedCrossRefGoogle Scholar
  19. 19.
    Kanev PM, Lo AK (1995) Surgical correction of sagittal craniosynostosis: complications of the pi procedure. J Craniofac Surg 6(2): 98–102PubMedCrossRefGoogle Scholar
  20. 20.
    Shaffrey ME, Persing JA, Delashaw JB, et al. (1991) Surgical treatment of metopic synostosis. Neurosurg Clin N Am 2(3): 621–627PubMedGoogle Scholar
  21. 21.
    Panchal J, Uttchin V (2003) Management of craniosynostosis. Plast Reconstr Surg 111(6): 2032–2048, quiz 2049PubMedCrossRefGoogle Scholar
  22. 22.
    Posnick JC (1996) Upper facial asymmetries resulting from unilateral coronal synostosis. Diagnosis and surgical reconstruction. Atlas Oral Maxillofac Surg Clin North Am 4(1): 53–66PubMedGoogle Scholar
  23. 23.
    Mofid MM, Manson PN, Robertson BC, et al. (2001) Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg 108(5): 1103–1114, discussion 1115–1117PubMedCrossRefGoogle Scholar
  24. 24.
    McCarthy JG (1994) The role of distraction osteogenesis in the reconstruction of the mandible in unilateral craniofacial microsomia. Clin Plast Surg 21(4): 625–631PubMedGoogle Scholar
  25. 25.
    McCarthy JG (1994) Mandibular bone lengthening. Operative Tech Plast Reconstr Surg 1(2): 99–104CrossRefGoogle Scholar
  26. 26.
    Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop 250: 8–26PubMedGoogle Scholar
  27. 27.
    Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop (238): 249–281Google Scholar
  28. 28.
    Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop 239: 263–285PubMedGoogle Scholar
  29. 29.
    Snyder CC, Levine GA, Swanson HM, Browne EZ, Jr (1973) Mandibular lengthening by gradual distraction. Preliminary report. Plast Reconstr Surg 51(5): 506–508PubMedCrossRefGoogle Scholar
  30. 30.
    McCarthy JG, Schreiber J, Karp N, et al. (1992) Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 89(1): 1–8PubMedCrossRefGoogle Scholar
  31. 31.
    Karp NS, Thorne CH, McCarthy JG, Sissons HA (1990) Bone lengthening in the craniofacial skeleton. Ann Plast Surg 24(3): 231–237PubMedCrossRefGoogle Scholar
  32. 32.
    Rachmiel A, Levy M, Laufer D (1995) Lengthening of the mandible by distraction osteogenesis: A report of cases. J Oral Maxillofac Surg 53(7): 838–846PubMedCrossRefGoogle Scholar
  33. 33.
    Rachmiel A, Jackson IT, Potparic A, Laufer D (1995) Midface advancement in sheep by gradual distraction: A 1-year follow-up study. J Oral Maxillofac Surg 53(5): 525–529PubMedCrossRefGoogle Scholar
  34. 34.
    Ortiz Monasterio F, Molina F, Andrade L, et al. (1997) Simultaneous mandibular and maxillary distraction in hemifacial microsomia in adults: Avoiding occlusal disasters. Plast Reconstr Surg 100(4): 852–861PubMedGoogle Scholar
  35. 35.
    Toth BA, Kim JW, Chin M, Cedars M (1998) Distraction osteogenesis and its application to the midface and bony orbit in craniosynostosis syndromes. J Craniofac Surg 9(2): 100–113, discussion 119-122PubMedCrossRefGoogle Scholar
  36. 36.
    Cedars MG, Linck DL, 2nd, Chin M, Toth BA (1999) Advancement of the midface using distraction techniques. Plast Reconstr Surg 103(2): 429–441PubMedCrossRefGoogle Scholar
  37. 37.
    Whitaker LA, Munro IR, Salyer KE, et al. (1979) Combined report of problems and complications in 793 craniofacial operations. Plast Reconstr Surg 64(2): 198–203PubMedCrossRefGoogle Scholar
  38. 38.
    Davies DW, Munro IR (1975) The anesthetic management and intraoperative care of patients undergoing major facial osteotomies. Plast Reconstr Surg 55(1): 50–55PubMedCrossRefGoogle Scholar
  39. 39.
    Whitaker LA, Bartlett SP, Schut L, Bruce D (1987) Craniosynostosis: an analysis of the timing, treatment, and complications in 164 consecutive patients. Plast Reconstr Surg 80(2): 195–212PubMedGoogle Scholar
  40. 40.
    Fearon JA, Yu J, Bartlett SP, et al. (1997) Infections in craniofacial surgery: a combined report of 567 procedures from two centers. Plast Reconstr Surg 100(4): 862–868PubMedGoogle Scholar
  41. 41.
    McCarthy JG, Epstein F, Sadove M, et al. (1984) Early surgery for craniofacial synostosis: an 8-year experience. Plast Reconstr Surg 73(4): 521–533PubMedCrossRefGoogle Scholar
  42. 42.
    Wilkie AO, Slaney SF, Oldridge M, et al. (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9(2): 165–172PubMedCrossRefGoogle Scholar
  43. 43.
    Robin NH, Feldman GJ, Mitchell HF, et al. (1994) Linkage of Pfeiffer syndrome to chromosome 8 centromere and evidence for genetic heterogeneity. Hum Mol Genet 3(12): 2153–2158PubMedCrossRefGoogle Scholar
  44. 44.
    Muenke M, Schell U, Hehr A, et al. (1994) A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 8(3): 269–274PubMedCrossRefGoogle Scholar
  45. 45.
    Wilkie AOM, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Current Biology 5(5): 500–507PubMedCrossRefGoogle Scholar
  46. 46.
    Ibrahimi OA, Eliseenkova AV, Plotnikov AN, et al. (2001) Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci U S A 98(13): 7182–7187PubMedCrossRefGoogle Scholar
  47. 47.
    Bellus GA, Gaudenz K, Zackai EH, et al. (1996) Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nat Genet 14(2): 174–176PubMedCrossRefGoogle Scholar
  48. 48.
    Mayahara H, Ito T, Nagai H, et al. (1993) In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9(1): 73–80PubMedCrossRefGoogle Scholar
  49. 49.
    Nakamura K, Kawaguchi H, Aoyama I, et al. (1997) Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J Orthop Res 15(2): 307–313PubMedCrossRefGoogle Scholar
  50. 50.
    Moore R, Ferretti P, Copp A, Thorogood P (2002) Blocking endogenous FGF-2 activity prevents cranial osteogenesis. Dev Biol 243(1): 99–114PubMedCrossRefGoogle Scholar
  51. 51.
    Mehrara BJ, Mackool RJ, McCarthy JG, et al. (1998) Immunolocalization of basic fibroblast growth factor and fibroblast growth factor receptor-1 and receptor-2 in rat cranial sutures. Plast Reconstr Surg 102(6): 1805–1817, discussion 1818–1820PubMedCrossRefGoogle Scholar
  52. 52.
    Most D, Levine JP, Chang J, et al. (1998) Studies in cranial suture biology: up-regulation of transforming growth factor-beta1 and basic fibroblast growth factor mRNA correlates with posterior frontal cranial suture fusion in the rat. Plast Reconstr Surg 101(6): 1431–1440PubMedCrossRefGoogle Scholar
  53. 53.
    Gosain AK, Recinos RF, Agresti M, Khanna AK (2004) TGF-beta1, FGF-2, and receptor mRNA expression in suture mesenchyme and dura versus underlying brain in fusing and nonfusing mouse cranial sutures. Plast Reconstr Surg 113(6): 1675–1684PubMedCrossRefGoogle Scholar
  54. 54.
    Warren SM, Brunet LJ, Harland RM, et al. (2003) The BMP antagonist noggin regulates cranial suture fusion. Nature 422(6932): 625–629PubMedCrossRefGoogle Scholar
  55. 55.
    Greenwald JA, Mehrara BJ, Spector JA, et al. (2001) In vivo modulation of FGF biological activity alters cranial suture fate. Am J Pathol 158(2): 441–452PubMedGoogle Scholar
  56. 56.
    Zhou YX, Xu X, Chen L, et al. (2000) A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet 9(13): 2001–2008PubMedCrossRefGoogle Scholar
  57. 57.
    Chen L, Li D, Li C, et al. (2003) A Ser250Trp substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis. Bone 33(2): 169–178PubMedCrossRefGoogle Scholar
  58. 58.
    Loeys BL, Chen J, Neptune ER, et al. (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37(3): 275–281PubMedCrossRefGoogle Scholar
  59. 59.
    Opperman LA, Adab K, Gakunga PT (2000) Transforming growth factorbeta 2 and TGF-beta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis. Dev Dyn 219(2): 237–247PubMedCrossRefGoogle Scholar
  60. 60.
    Opperman LA, Galanis V, Williams AR, Adab K (2002) Transforming growth factor-beta3 (Tgf-beta3) down-regulates Tgf-beta3 receptor type I (Tbetar-I) during rescue of cranial sutures from osseous obliteration. Orthod Craniofac Res 5(1): 5–16PubMedCrossRefGoogle Scholar
  61. 61.
    Opperman LA, Nolen AA, Ogle RC (1997) TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro. J Bone Miner Res 12(3): 301–310PubMedCrossRefGoogle Scholar
  62. 62.
    Opperman LA, Chhabra A, Cho RW, Ogle RC (1999) Cranial suture obliteration is induced by removal of transforming growth factor (TGF)-beta 3 activity and prevented by removal of TGF-beta 2 activity from fetal rat calvaria in vitro. J Craniofac Genet Dev Biol 19(3): 164–173PubMedGoogle Scholar
  63. 63.
    Roth DA, Longaker MT, McCarthy JG, et al. (1997) Studies in cranial suture biology: Part I. Increased immunoreactivity for transforming growth factor-beta (b1, b2, b3) during rat cranial suture fusion. J Bone Miner Res 12(3): 311–321PubMedCrossRefGoogle Scholar
  64. 64.
    Nacamuli RP, Fong KD, Warren SM, et al. (2003) Markers of osteoblast differentiation in fusing and nonfusing cranial sutures. Plast Reconstr Surg 112(5): 1328–1335PubMedCrossRefGoogle Scholar
  65. 65.
    Nacamuli RP, Song HM, Fang TD, et al. (2004) Quantitative transcriptional analysis of fusing and nonfusing cranial suture complexes in mice. Plast Reconstr Surg 114(7): 1818–1825PubMedCrossRefGoogle Scholar
  66. 66.
    Mehrara BJ, Steinbrech DS, Saadeh PB, et al. (1999) Expression of highaffinity receptors for TGF-beta during rat cranial suture fusion. Ann Plast Surg 42(5): 502–508PubMedCrossRefGoogle Scholar
  67. 67.
    Roth DA, Gold LI, Han VK, et al. (1997) Immunolocalization of transforming growth factor beta 1, beta 2, and beta 3 and insulin-like growth factor I in premature cranial suture fusion. Plast Reconstr Surg 99(2): 300–309PubMedCrossRefGoogle Scholar
  68. 68.
    Wan DC, Pomerantz JH, Brunet LJ, et al. (2007) Noggin suppression enhances in vitro osteogenesis and accelerates in vivo bone formation. J Biol Chem 282(36): 26450–26459PubMedCrossRefGoogle Scholar
  69. 69.
    Urist MR, DeLange RJ, Finerman GA (1983) Bone cell differentiation and growth factors. Science 220(4598): 680–686PubMedCrossRefGoogle Scholar
  70. 70.
    Reddi H (1995) Bone morphogenetic proteins. Adv Dent Res 9(3 Suppl):13PubMedCrossRefGoogle Scholar
  71. 71.
    Nacamuli RP, Fong KD, Lenton KA, et al. (2005) Expression and possible mechanisms of regulation of BMP3 in rat cranial sutures. Plast Reconstr Surg 116(5): 1353–1362PubMedCrossRefGoogle Scholar
  72. 72.
    Wilkie AO (1997) Craniosynostosis: genes and mechanisms. Hum Mol Genet 6(10): 1647–1656PubMedCrossRefGoogle Scholar
  73. 73.
    Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7(3): 165–197PubMedCrossRefGoogle Scholar
  74. 74.
    Ueno H, Gunn M, Dell K, et al. (1992) A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptors. J Biol Chem 267: 1470–1476PubMedGoogle Scholar
  75. 75.
    Lomri A, Lemonnier J, Delannoy P, Marie PJ. (2001) Increased expression of protein kinase Calpha, interleukin-1alpha, and RhoA guanosine 5′-triphosphatase in osteoblasts expressing the Ser252Trp fibroblast growth factor 2 receptor Apert mutation: identification by analysis of complementary DNA microarray. J Bone Miner Res 16(4): 705–712PubMedCrossRefGoogle Scholar
  76. 76.
    Kim HJ, Lee MH, Park HS, et al. (2003) Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure. Dev Dyn 227(3): 335–346PubMedCrossRefGoogle Scholar
  77. 77.
    Moursi AM, Winnard PL, Fryer D, Mooney MP (2003) Delivery of transforming growth factor-beta2-perturbing antibody in a collagen vehicle inhibits cranial suture fusion in calvarial organ culture. Cleft Palate Craniofac J 40(3): 225–232PubMedCrossRefGoogle Scholar
  78. 78.
    Wu XB, Li Y, Schneider A, et al. (2003) Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest 112(6): 924–934PubMedGoogle Scholar
  79. 79.
    Losee JE, Cooper GM, Barbano T, et al. (2005) Noggin Inhibits Resynostosis in Craniosynostotitc Rabbits. (Abstract Presented at the XIth International Congress of the International Society of Craniofacial Surgery)Google Scholar
  80. 80.
    Shenaq SM (1988) Reconstruction of complex cranial and craniofacial defects utilizing iliac crest-internal oblique microsurgical free flap. Microsurgery 9(2): 154–158PubMedCrossRefGoogle Scholar
  81. 81.
    Bruens ML, Pieterman H, de Wijn JR, Vaandrager JM (2003) Porous polymethylmethacrylate as bone substitute in the craniofacial area. J Craniofac Surg 14(1): 63–68PubMedCrossRefGoogle Scholar
  82. 82.
    Nicholson JW (1998) Glass-ionomers in medicine and dentistry. Proc Inst Mech Eng [H] 212(2): 121–126Google Scholar
  83. 83.
    Bostrom R, Mikos A (1997) Tissue engineering of bone. In Atala A, Mooney DJ, Vacanti JP, Langer R, eds. Synthetic Biodegradable Polymer Scaffolds, Vol. 1. Boston: Birkhauser 215–234Google Scholar
  84. 84.
    Cho BC, Kim JY, Lee JH, et al. (2004) The bone regenerative effect of chitosan microsphere-encapsulated growth hormone on bony consolidation in mandibular distraction osteogenesis in a dog model. J Craniofac Surg 15(2): 299–311, discussion 312–313PubMedCrossRefGoogle Scholar
  85. 85.
    Mulliken JB, Glowacki J (1980) Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg 65(5): 553–560PubMedCrossRefGoogle Scholar
  86. 86.
    Weissman IL (2002) Stem cells-scientific, medical, and political issues. N Engl J Med 346(20): 1576–1579PubMedCrossRefGoogle Scholar
  87. 87.
    Pittenger MF, Mackay AM, Beck SC, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147PubMedCrossRefGoogle Scholar
  88. 88.
    Pittenger MF, Mosca JD, McIntosh KR (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251: 3–11PubMedGoogle Scholar
  89. 89.
    Zuk PA, Zhu M, Ashjian P, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12): 4279–4295PubMedCrossRefGoogle Scholar
  90. 90.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309): 71–74PubMedCrossRefGoogle Scholar
  91. 91.
    Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13(1): 69–80PubMedCrossRefGoogle Scholar
  92. 92.
    Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13(1): 81–88PubMedCrossRefGoogle Scholar
  93. 93.
    Schantz JT, Hutmacher DW, Lam CX, et al. (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9Suppl 1: S127–139PubMedCrossRefGoogle Scholar
  94. 94.
    Schantz JT, Teoh SH, Lim TC, et al. (2003) Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng 9Suppl 1: S113–126PubMedCrossRefGoogle Scholar
  95. 95.
    Rohner D, Hutmacher DW, Cheng TK, et al. (2003) In vivo efficacy of bone — marrow — coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater 66(2): 574–580PubMedCrossRefGoogle Scholar
  96. 96.
    De Ugarte DA, Morizono K, Elbarbary A, et al. (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3): 101–109PubMedCrossRefGoogle Scholar
  97. 97.
    Banfi A, Muraglia A, Dozin B, et al. (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 28(6): 707–715PubMedCrossRefGoogle Scholar
  98. 98.
    Mendes SC, Tibbe JM, Veenhof M, et al. (2002) Bone Tissue-Engineered Implants Using Human Bone Marrow Stromal Cells: Effect of Culture Conditions and Donor Age. Tissue Eng 8(6): 911–920PubMedCrossRefGoogle Scholar
  99. 99.
    Mueller SM, Glowacki J (2001) Agerelated decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82(4): 583–590PubMedCrossRefGoogle Scholar
  100. 100.
    Peroni D, Scambi I, Pasini A, et al. (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 2008; 314(3):603–615PubMedCrossRefGoogle Scholar
  101. 101.
    Zuk PA, Zhu M, Mizuno H, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2): 211–228PubMedCrossRefGoogle Scholar
  102. 102.
    Shi YY, Nacamuli RP, Salim A, Longaker MT (2005) The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 116(6): 1686–1696PubMedCrossRefGoogle Scholar
  103. 103.
    Bergman RJ, Gazit D, Kahn AJ, et al. (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11(5): 568–577PubMedCrossRefGoogle Scholar
  104. 104.
    Lee JA, Parrett BM, Conejero JA, et al. (2003) Biological alchemy: engineering bone and fat from fatderived stem cells. Ann Plast Surg 50(6): 610–617PubMedCrossRefGoogle Scholar
  105. 105.
    Lee JH, Rhie JW, Oh DY, Ahn ST (2008) Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous threedimensional scaffold. Biochem Biophys Res Commun 370(3): 456–460PubMedCrossRefGoogle Scholar
  106. 106.
    Hicok KC, Du Laney TV, Zhou YS, et al. (2004) Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10(3–4): 371–380PubMedCrossRefGoogle Scholar
  107. 107.
    Peterson B, Zhang J, Iglesias R, et al. (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11(1–2): 120–129PubMedCrossRefGoogle Scholar
  108. 108.
    Cowan CM, Shi YY, Aalami OO, et al. (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22(5): 560–567PubMedCrossRefGoogle Scholar
  109. 109.
    Lendeckel S, Jodicke A, Christophis P, et al. (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32(6): 370–373PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Derrick C. Wan
    • 1
    • 2
  • Matthew D. Kwan
    • 2
  • Anand Kumar
    • 1
  • James P. Bradley
    • 1
  • Michael T. Longaker
    • 2
    • 3
  1. 1.Dept. of SurgeryUCLA David Geffen School of MedicineLos AngelesUSA
  2. 2.Dept. of SurgeryStanford University Medical CenterLos AngelesUSA
  3. 3.Institute for Stem Cell Biology and Regenerative MedicineStanford University Medical CenterLos AngelesUSA

Personalised recommendations