Advertisement

German Journal of Exercise and Sport Research

, Volume 49, Issue 4, pp 424–434 | Cite as

Effector-specific priming effects during action observation in combat sports

  • Andrea PolzienEmail author
  • Iris Güldenpenning
  • Matthias Weigelt
Main Article
  • 53 Downloads

Abstract

The anticipation of actions of other individuals is crucial for skilled performance. A possible mechanism that could enable the anticipation of action is that of action simulation. We conducted three experiments to investigate effector matching processes, which are thought to be a basic prerequisite for action simulation during action observation. To this end, a static picture of a combat sport athlete performing a kick or a punch was presented. Participants were instructed to respond to a colored target, by either pressing a hand or a foot button. In congruent conditions, the effector in the picture (i.e., the hand during the punch and the foot during the kick) and the participants’ responding effector (i.e., the hand or foot) were the same, whereas in incongruent conditions, they differed. In Experiment 1, the colored target consisted of a blue or red frame surrounding the picture. When participants responded to the frame’s color, the task-irrelevant action displayed in the picture did not induce any effector-specific priming effects. In Experiment 2, a colored circle surrounded the active or passive effector in the picture. When the attention was directed to the effector, participants showed faster reactions and fewer errors in congruent compared to incongruent conditions, regardless of whether the circle surrounded the active or passive effector. Experiment 3 verified that the results found in Experiment 2 were based on effector matching rather than on a spatial feature overlap between stimulus and response. Different underlying mechanisms regarding the priming processes during action observation are discussed.

Keywords

Anticipation Common coding Action simulation Effector matching Vertical Simon effect 

Effektorspezifische Bahnungsprozesse während der Handlungsbeobachtung im Kampfsport

Zusammenfassung

Die Antizipation von Handlungen ist entscheidend für sportliche Leistungen. Ein Mechanismus, der Handlungsantizipation ermöglichen könnte, ist der der Handlungssimulation. In 3 Experimenten wurden Effektor-Matching-Prozesse untersucht, von denen angenommen wird, dass sie eine Voraussetzung für Handlungssimulation darstellen. Dafür wurden statische Bilder eines Kampfsportlers genutzt, der einen Tritt oder einen Schlag ausführte. Die Versuchsteilnehmer/innen wurden instruiert, durch das Drücken eines Hand- oder Fußtasters auf einen gleichzeitig präsentierten Farbreiz zu reagieren. In kongruenten Bedingungen stimmten der Effektor im Bild (d. h. die Hand beim Schlag oder der Fuß beim Tritt) mit dem antwortenden Effektor der Versuchsperson (d. h. Hand oder Fuß) überein, wohingegen in inkongruenten Bedingungen beide Effektoren nicht übereinstimmten. In Experiment 1 bestand der Farbreiz aus einem blauen oder roten Rahmen, der das Bild umgab. Bei der Reaktion auf den farbigen Rahmen führte die aufgabenirrelevante Handlung im Bild zu keinen effektorspezifischen Bahnungsprozessen. In Experiment 2 umgab ein farbiger Kreis den aktiven Effektor (d. h. Schlaghand, Trittfuß) oder passiven Effektor (d. h. Deckungshand, Standbein) im Bild. Bei Lenkung der Aufmerksamkeit auf den Effektor reagierten die Versuchsteilnehmer/innen in kongruenten Bedingungen schneller und machten weniger Fehler als in inkongruenten Bedingungen, unabhängig davon, ob der Kreis den aktiven oder passiven Effektor umgab. Experiment 3 bestätigte, dass die in Experiment 2 gefundenen Ergebnisse auf Effektor-Matching und nicht auf die räumliche Übereinstimmung von Reiz und Reaktion zurückzuführen sind. Verschiedene zugrunde liegende Mechanismen in Bezug auf Bahnungsprozesse während der Handlungsbeobachtung werden diskutiert.

Schlüsselwörter

Antizipation „Common coding“ Handlungssimulation Effektor-Matching Vertikaler Simon-Effekt 

Notes

Compliance with ethical guidelines

Conflict of interest

A. Polzien, I. Güldenpenning and M. Weigelt declare that they have no competing interests.

Each participant gave informed consent to participate and received course credits. All rights of the participants were protected, and all experiments were carried out according to the seventh revision (Fortaleza) of the 1964 Declaration of Helsinki by the World Medical Association (WMA). This research was also reviewed and approved by the Ethics Committee of the University Paderborn. For images or other information within the manuscript which identify patients, consent was obtained from them and/or their legal guardians.

References

  1. Abernethy, B. (1987). Anticipation in sport: a review. Physical Education Review, 10(1), 5–16.Google Scholar
  2. Atha, J., Yeadon, M. R., Sandover, J., & Parsons, K. C. (1985). The damaging punch. British Medical Journal, 291(6511), 1756–1757.  https://doi.org/10.1136/bmj.291.6511.1756.CrossRefPubMedGoogle Scholar
  3. Bach, P., & Tipper, S. P. (2007). Implicit action encoding influences personal-trait judgments. Cognition, 102(2), 151–178.  https://doi.org/10.1016/j.cognition.2005.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bach, P., Peatfield, N. A., & Tipper, S. P. (2007). Focusing on body sites: the role of spatial attention in action perception. Experimental Brain Research, 178(4), 509–517.  https://doi.org/10.1007/s00221-006-0756-4.CrossRefPubMedGoogle Scholar
  5. Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124–143.  https://doi.org/10.1006/brcg.2000.1225.CrossRefPubMedGoogle Scholar
  6. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H.-J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13(2), 400–404.  https://doi.org/10.1111/j.1460-9568.2001.01385.x.CrossRefPubMedGoogle Scholar
  7. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.  https://doi.org/10.1093/cercor/bhi007.CrossRefPubMedGoogle Scholar
  8. Gillmeister, H., Catmur, C., Liepelt, R., Brass, M., & Heyes, C. (2008). Experience-based priming of body parts: a study of action imitation. Brain Research, 1217, 157–170.  https://doi.org/10.1016/j.brainres.2007.12.076.CrossRefPubMedGoogle Scholar
  9. Hommel, B., & Lippa, Y. (1995). S‑R compatibility effects due to context-dependent spatial stimulus coding. Psychonomic Bulletin & Review, 2(3), 370–374.  https://doi.org/10.3758/BF03210974.CrossRefGoogle Scholar
  10. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15(6), 632–637.  https://doi.org/10.1016/j.conb.2005.10.010.CrossRefPubMedGoogle Scholar
  11. Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14(1 Pt 2), 103–109.  https://doi.org/10.1006/nimg.2001.0832.CrossRefGoogle Scholar
  12. Klein-Soetebier, T., Steggemann, Y., & Weigelt, M. (2011). Effektorspezifische Bahnungsprozesse beim Betrachten von Basketball- und Fußballspielern. Zeitschrift für Sportpsychologie, 18(4), 155–160.  https://doi.org/10.1026/1612-5010/a000057.CrossRefGoogle Scholar
  13. Loffing, F., & Cañal-Bruland, R. (2017). Anticipation in sport. Current Opinion in Psychology, 16, 6–11.  https://doi.org/10.1016/j.copsyc.2017.03.008.CrossRefPubMedGoogle Scholar
  14. Memmert, D. (2009). Pay attention! A review of visual attentional expertise in sport. International Review of Sport and Exercise Psychology, 2(2), 119–138.  https://doi.org/10.1080/17509840802641372.CrossRefGoogle Scholar
  15. Pfister, M., Lue, J.-C. L., Stefanini, F. R., Falabella, P., Dustin, L., Koss, M. J., & Humayun, M. S. (2014). Comparison of reaction response time between hand and foot controlled devices in simulated microsurgical testing. BioMed Research International, 1–8.  https://doi.org/10.1155/2014/769296.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action: current approaches (pp. 167–201). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  17. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.  https://doi.org/10.1080/713752551.CrossRefGoogle Scholar
  18. Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349–355.  https://doi.org/10.1016/j.tics.2007.06.005.CrossRefPubMedGoogle Scholar
  19. Steggemann, Y., Engbert, K., & Weigelt, M. (2011). Selective effects of motor expertise in mental body rotation tasks: comparing object-based and perspective transformations. Brain and Cognition, 76(1), 97–105.  https://doi.org/10.1016/j.bandc.2011.02.013.CrossRefPubMedGoogle Scholar
  20. Taylor, A., Flynn, M., Edmonds, C. J., & Gardner, M. R. (2016). Observed bodies generate object-based spatial codes. Acta Psychologica, 169, 71–78.  https://doi.org/10.1016/j.actpsy.2016.05.009.CrossRefPubMedGoogle Scholar
  21. Töbel, L., Hübner, R., & Stürmer, B. (2014). Suppression of irrelevant activation in the horizontal and vertical Simon task differs quantitatively not qualitatively. Acta Psychologica, 152, 47–55.  https://doi.org/10.1016/j.actpsy.2014.07.007.CrossRefPubMedGoogle Scholar
  22. Vallesi, A., Mapelli, D., Schiff, S., Amodio, P., & Umiltà, C. (2005). Horizontal and vertical Simon effect: different underlying mechanisms? Cognition, 96(1), B33–43.  https://doi.org/10.1016/j.cognition.2004.11.009.CrossRefPubMedGoogle Scholar
  23. Vu, K.-P. L. (2007). Influences on the Simon effect of prior practice with spatially incompatible mappings: transfer within and between horizontal and vertical dimensions. Memory & Cognition, 35(6), 1463–1471.  https://doi.org/10.3758/BF03193616.CrossRefGoogle Scholar
  24. Wang, H., Liu, N., Zou, G., Li, H., Zeng, H., Chen, J., & Chen, Q. (2016). The Simon effect based on the egocentric and allocentric reference frame. Attention, Perception & Psychophysics, 78(2), 427–436.  https://doi.org/10.3758/s13414-015-1032-0.CrossRefGoogle Scholar
  25. Zentgraf, K., Munzert, J., Bischoff, M., & Newman-Norlund, R. D. (2011). Simulation during observation of human actions—theories, empirical studies, applications. Vision Research, 51(8), 827–835.  https://doi.org/10.1016/j.visres.2011.01.007.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Psychology and Movement Science, Department of Sport & HealthPaderborn UniversityPaderbornGermany

Personalised recommendations