Advertisement

Changing implicit attitudes for physical activity with associative learning

Null findings from an experimental study conducted in pulmonary rehabilitation
  • Guillaume ChevanceEmail author
  • Tanya Berry
  • Julie Boiché
  • Nelly Heraud
Main Article

Abstract

Background

This study evaluated the impact of 4‑day exposure to posters pairing physical activity or sedentary behavior with positive stimuli on implicit attitudes toward physical activity versus sedentary behavior, and physical activity measured with accelerometers.

Methods

This study was conducted among participants enrolled in a pulmonary rehabilitation program. Participants (N = 79) were randomized into groups exposed to (i) posters of people being physically active, (ii) posters of people engaged in sedentary behaviors, or (iii) control, not exposed. Over four days, different posters were put in patients’ bedrooms. Participants were not informed of the link between the intervention and the evaluations. Implicit attitudes were measured with an Implicit Association Test at the start and at the end of the intervention. Physical activity was measured with accelerometers the weekend after the intervention.

Results

Regarding implicit attitudes, results showed a non-significant time × group interaction. There were also no significant differences between groups regarding physical activity. Bayesian analyses confirmed these null hypotheses.

Conclusion

Putting posters pairing physical activity stimuli with positive stimuli in patients’ bedroom during a rehabilitation program did not impact their implicit attitudes or physical activity behavior. Other studies are needed to develop effective interventions targeting implicit attitudes.

Keywords

Automatic processes Automatic evaluation Non-conscious processes Dual processes Bayesian analyses 

Veränderung impliziter Einstellungen zu körperlicher Aktivität durch assoziatives Lernen

Nullergebnisse einer experimentellen Studie im Rahmen der pneumologischen Rehabilitation

Zusammenfassung

Hintergrund

In dieser Studie wurde der Einfluss einer 4‑tägigen Exposition mit Postern, die körperliche Aktivität oder ein sitzendes Verhalten mit positiven Stimuli paarten, auf implizite Einstellungen gegenüber körperlicher Aktivität vs. sitzendem Verhalten und auf die mit einem Akzelerometer gemessene körperliche Aktivität untersucht.

Methoden

Die Teilnehmer dieser Studie (N = 79) befanden sich in einem Programm für pneumologische Rehabilitation. Sie wurden in Gruppen randomisiert, die (i) Postern von körperlich aktiven Personen bzw. (ii) Postern von Personen mit sitzendem Verhalten ausgesetzt waren oder (iii) als nichtexponierte Kontrolle fungierten. Über einen Zeitraum von 4 Tagen wurden in den Schlafzimmern der Patienten verschiedene Poster aufgehängt. Die Teilnehmer wurden nicht über die Verbindung zwischen der Intervention und den Untersuchungen in Kenntnis gesetzt. Implizite Einstellungen wurden mit einem darauf ausgelegten Test (Implicit Association Test) zu Beginn und am Ende der Intervention gemessen. Körperliche Aktivität wurde am Wochenende nach der Intervention mit Akzelerometern bestimmt.

Ergebnisse

Bezüglich impliziter Einstellungen zeigten die Ergebnisse eine nichtsignifikante Zeit × Gruppen-Interaktion. Auch signifikante Unterschiede zwischen den Gruppen hinsichtlich der körperlichen Aktivität fanden sich nicht. Bayes-Analysen bestätigten diese Nullhypothesen.

Schlussfolgerung

Das Aufhängen von Postern, die Stimuli körperlicher Aktivität mit positiven Stimuli paaren, in den Schlafzimmern von Patienten eines Rehabilitationsprogramms hatte keinen Einfluss auf ihre impliziten Einstellungen oder ihr Verhalten bezüglich körperlicher Aktivität. Für die Entwicklung wirksamer Interventionen, die auf implizite Einstellungen abzielen, sind weitere Studien erforderlich.

Schlüsselwörter

Automatische Vorgänge Automatische Auswertung Unbewusste Vorgänge Duale Prozesse Bayes-Analyse 

Notes

Acknowledgements

The research was conducted at the clinic “La Solane”, Osséja, France. The authors wish to thank the entire staff of the clinic, and especially Nadia Souyah for her precious help on the intervention.

Compliance with ethical guidelines

Conflict of interest

G. Chevance, T. Berry, J. Boiché and N. Heraud declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Supplementary material

12662_2018_559_MOESM1_ESM.docx (6 mb)
(1) posters used for this study, (2) correlation table for the main variables measured, (3) supplemental results regarding the posters selection, (4) description of the IAT stimuli, (5) items used for the manipulation check

References

  1. Antoniewicz, F., & Brand, R. (2016). Learning to like exercising: evaluative conditioning changes automatic evaluations of exercising and influences subsequent exercising behavior. Journal of Sport and Exercise Psychology, 38(2), 138–148.CrossRefGoogle Scholar
  2. Baeyens, F., Eelen, P., Crombez, G., & Van den Bergh, O. (1992). Human evaluative conditioning: Acquisition trials, presentation schedule, evaluative style and contingency awareness. Behavior Research and. Therapy, 30, 133–142.Google Scholar
  3. Bargh, J. A. (1994). The four horsemen of automaticity: awareness, intention, efficiency, and control in social cognition. In R. S. Wyer & T. K. Srull (Eds.), Handbook of social cognition (pp. 1–40). Hillsdale: Erlbaum.Google Scholar
  4. Brand, R., & Antoniewicz, F. (2016). Affective evaluations of exercising: the role of automatic–reflective evaluation discrepancy. Journal of Sport and Exercise Psychology, 38(6), 631–638.  https://doi.org/10.1123/jsep.2016-0171.CrossRefGoogle Scholar
  5. Brand, R., & Ekkekakis, P. (2018). Affective–reflective theory of physical inactivity and exercise. German Journal of Exercise and Sport Research, 48(1), 48–58.  https://doi.org/10.1007/s12662-017-0477-9.CrossRefGoogle Scholar
  6. Carrillo, E., Fiszman, S., Lähteenmäki, L., & Varela, P. (2014). Consumers’ perception of symbols and health claims as health-related label messages. A cross-cultural study. Food Research International, 62, 653–661.CrossRefGoogle Scholar
  7. Chen, M., & Bargh, J. A. (1999). Consequences of automatic evaluation: immediate behavioral predispositions to approach or avoid the stimulus. Personality and Social Psychology Bulletin, 25(2), 215–224.CrossRefGoogle Scholar
  8. Cheval, B., Radel, R., Neva, J. L., Boyd, L. A., Swinnen, S. P., Sander, D., & Boisgontier, M. P. (2018). Behavioral and neural evidence of the rewarding value of exercise behaviors: a systematic review. Sports Medicine, 48(6), 1389–1404.  https://doi.org/10.1007/s40279-018-0898-0.CrossRefGoogle Scholar
  9. Cheval, B., Sarrazin, P., & Pelletier, L. (2014). Impulsive approach tendencies towards physical activity and sedentary behaviors, but not reflective intentions, prospectively predict non-exercise activity thermogenesis. Plos One.  https://doi.org/10.1371/journal.pone.0115238.Google Scholar
  10. Cheval, B., Sarrazin, P., Pelletier, L., & Friese, M. (2016). Effect of retraining approach-avoidance tendencies on an exercise task: a randomized controlled trial. Journal of Physical Activity and Health, 13(12), 1396–1403.CrossRefGoogle Scholar
  11. Chevance, G., Héraud, N., Guerrieri, A., Rebar, A., & Boiché, J. (2017b). Measuring implicit attitudes toward physical activity and sedentary behaviors: test-retest reliability of three scoring algorithms of the Implicit Association Test and Single Category-Implicit Association Test. Psychology of Sport and Exercise, 31, 70–78.CrossRefGoogle Scholar
  12. Chevance, G., Héraud, N., Varray, A., & Boiché, J. (2017a). Change in explicit and implicit motivation toward physical activity and sedentary behavior in pulmonary rehabilitation and associations with postrehabilitation behaviors. Rehabilitation Psychology, 62(2), 119–129.CrossRefGoogle Scholar
  13. Chevance, G., Stephan, Y., Héraud, N., & Boiché, J. (2018). Interaction between self-regulation, intentions and implicit attitudes in the prediction of physical activity among persons with obesity. Health Psychology, 37(3), 257–261.  https://doi.org/10.1037/hea0000572.CrossRefGoogle Scholar
  14. Conroy, D. E., & Berry, T. R. (2017). Automatic affective evaluations of physical activity. Exercise and Sport Sciences Reviews, 45(4), 230–237.CrossRefGoogle Scholar
  15. Cope, K., Vandelanotte, C., Short, C. E., Conroy, D. E., Rhodes, R. E., Jackson, B., Rebar, A. L., et al. (2018). Reflective and non-conscious responses to exercise images. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2017.02272.Google Scholar
  16. Crutzen, R., Peters, G. Y., & Noijen, J. (2017). Using confidence interval-based estimation of relevance to select social-cognitive determinants for behavior change interventions. Frontiers in Public Health.  https://doi.org/10.3389/fpubh.2017.00165.Google Scholar
  17. Depaoli, S., Rus, H. M., Clifton, J. P., Schoot, R. V., & Tiemensma, J. (2017). An introduction to Bayesian statistics in health psychology. Health Psychology Review, 11(3), 248–264.CrossRefGoogle Scholar
  18. Esteban, C., Arostegui, I., Aburto, M., Moraza, J., Quintana, J. M., Aizpiri, S., Capelastegui, A., et al. (2014). Influence of changes in physical activity on frequency of hospitalization in chronic obstructive pulmonary disease. Respirology, 19(3), 330–338.CrossRefGoogle Scholar
  19. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.CrossRefGoogle Scholar
  20. Gawronski, B., & Bodenhausen, G. V. (2006). Associative and propositional processes in evaluation: an integrative review of implicit and explicit attitude change. Psychological Bulletin, 132, 692–731.CrossRefGoogle Scholar
  21. Gawronski, B., & De Houwer, J. (2014). Implicit measures in social and personality psychology. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (2nd edn., pp. 283–310). New York: Cambridge University Press.Google Scholar
  22. Gawronski, B., & Lebel, E. P. (2008). Understanding patterns of attitude change: when implicit measures show change, but explicit measures do not. Journal of Experimental Social Psychology, 44(5), 1355–1361.CrossRefGoogle Scholar
  23. Gibson, B. (2008). Can evaluative conditioning change attitudes toward mature brands? New evidence from the Implicit Association Test. Journal of Consumer Research, 35(1), 178–188.CrossRefGoogle Scholar
  24. Godin, G., & Shephard, R. (1997). Godin leisure-time exercise questionnaire. Medicine & Science in Sports & Exercise, 29, 36–38.Google Scholar
  25. Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: attitudes, self-esteem, and stereotypes. Psychological Review, 102(1), 4–27.CrossRefGoogle Scholar
  26. Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: the implicit association test. Journal of Personality and Social Psychology, 74, 1464–1480.CrossRefGoogle Scholar
  27. Hees, V. T., Fang, Z., Langford, J., Assah, F., Mohammad, A., Silva, I. C., Brage, S., et al. (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. Journal of Applied Physiology, 117(7), 738–744.CrossRefGoogle Scholar
  28. Hildebrand, M., Hansen, B. H., Hees, V. T., & Ekelund, U. (2017). Evaluation of raw acceleration sedentary thresholds in children and adults. Scandinavian Journal of Medicine & Science in Sports.  https://doi.org/10.1111/sms.12795.Google Scholar
  29. Hofmann, W., Friese, M., & Wiers, R. W. (2008). Impulsive versus reflective influences on health behavior: a theoretical framework and empirical review. Health Psychology Review, 2(2), 111–137.  https://doi.org/10.1080/17437190802617668.CrossRefGoogle Scholar
  30. Hofmann, W., Houwer, J. D., Perugini, M., Baeyens, F., & Crombez, G. (2010). Evaluative conditioning in humans: a meta-analysis. Psychological Bulletin, 136(3), 390–421.  https://doi.org/10.1037/a0018916.CrossRefGoogle Scholar
  31. Hollands, G. J., Bignardi, G., Johnston, M., Kelly, M. P., Ogilvie, D., Petticrew, M., Marteau, T. M., et al. (2017). The TIPPME intervention typology for changing environments to change behavior. Nature Human Behavior, 1(8), 140.  https://doi.org/10.1038/s41562-017-0140.CrossRefGoogle Scholar
  32. Hollands, G. J., Marteau, T. M., & Fletcher, P. C. (2016). Non-conscious processes in changing health-related behavior: a conceptual analysis and framework. Health Psychology Review, 10(4), 381–394.CrossRefGoogle Scholar
  33. Houten, R. V., Nau, P. A., & Merrigan, M. (1981). Reducing elevator energy use: a comparison of posted feedback and reduced elevator convenience. Journal of Applied Behavior Analysis, 14(4), 377–387.CrossRefGoogle Scholar
  34. De Houwer, J. D. (2007). A conceptual and theoretical analysis of evaluative conditioning. The Spanish journal of psychology, 10(2), 230–241.CrossRefGoogle Scholar
  35. De Houwer, J. D., & Moors, A. (2012). How to define and examine implicit processes? In R. Proctor & J. Capaldi (Eds.), Implicit and explicit processes in the psychology of science (pp. 183–198). New York: Oxford University Press.CrossRefGoogle Scholar
  36. Hyde, A. L., Elavsky, S., Doerksen, S. E., & Conroy, D. E. (2012). The stability of automatic evaluations of physical activity and their relations with physical activity. Journal of Sport and Exercise Psychology, 34(6), 715–736.CrossRefGoogle Scholar
  37. JASP Team (2016). JASP version 0.8. Computer softwareGoogle Scholar
  38. Jeffreys, H. (1961). Theory of probability (3rd edn.). Oxford: Oxford University Press.Google Scholar
  39. Klepacz, N. A., Nash, R. A., Egan, B., Hodgkins, C. E., & Raats, M. M. (2016). When is an image a health claim? A false-recollection method to detect implicit inferences about products’ health benefits. Health Psychology, 35, 898–907.CrossRefGoogle Scholar
  40. Latimer, A. E., Brawley, L. R., & Bassett, R. L. (2010). A systematic review of three approaches for constructing physical activity messages: What messages work and what improvements are needed? International Journal of Behavioral Nutrition and Physical Activity, 7(1), 36.CrossRefGoogle Scholar
  41. Markland, D., Hall, C. R., Duncan, L. R., & Simatovic, J. (2015). The effects of an imagery intervention on implicit and explicit exercise attitudes. Psychology of Sport and Exercise, 17, 24–31.CrossRefGoogle Scholar
  42. Marteau, T. M., Hollands, G. J., & Fletcher, P. C. (2012). Changing human behavior to prevent disease: the importance of targeting automatic processes. Science, 337(6101), 1492–1495.  https://doi.org/10.1126/science.1226918.CrossRefGoogle Scholar
  43. McGill, R., Anwar, E., Orton, L., Bromley, H., Lloyd-Williams, F., O’Flaherty, M., Capewell, S., et al. (2015). Erratum to: Are interventions to promote healthy eating equally effective for all? Systematic review of socioeconomic inequalities in impact. BMC Public Health.  https://doi.org/10.1186/s12889-015-2162-y.Google Scholar
  44. Michie, S., Wood, C., Johnston, M., Abraham, C., Francis, J., Hardeman, W., Cane, J., et al. (2013). The behavior change technique (BCT) taxonomy (v1) of 93 hierarchically-clustered techniques: testing reliability of the taxonomy in specifying the content of behavior change interventions. Annals of Behavioral Medicine, 46(1), 81–95.  https://doi.org/10.1037/e576662013-001.CrossRefGoogle Scholar
  45. Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Chambers, C. D., Sert, N. P., Ioannidis, J. P., et al. (2017). A manifesto for reproducible science. Nature Human Behavior, 1(1), 21.  https://doi.org/10.1038/s41562-016-0021.CrossRefGoogle Scholar
  46. Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science.  https://doi.org/10.1126/science.aac4716.Google Scholar
  47. Papies, E. K. (2016). Health goal priming as a situated intervention tool: how to benefit from nonconscious motivational routes to health behavior. Health Psychology Review, 10(4), 408–424.CrossRefGoogle Scholar
  48. Pitta, F., Troosters, T., Spruit, M. A., Probst, V. S., Decramer, M., & Gosselink, R. (2005). Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 171(9), 972–977.CrossRefGoogle Scholar
  49. Rebar, A. L., Dimmock, J. A., Jackson, B., Rhodes, R. E., Kates, A., Starling, J., & Vandelanotte, C. (2016). A systematic review of the effects of non-conscious regulatory processes in physical activity. Health Psychology Review, 10(4), 395–407.CrossRefGoogle Scholar
  50. Richetin, J., Costantini, G., Perugini, M., & Schönbrodt, F. (2015). Should we stop looking for a better scoring algorithm for handling Implicit Association Test data? Test of the role of errors, extreme latencies treatment, scoring formula, and practice trials on reliability and validity. Plos ONE.  https://doi.org/10.1371/journal.pone.0129601.Google Scholar
  51. Schinkoeth, M., & Antoniewicz, F. (2017). Automatic evaluations and exercising: systematic review and implications for future research. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2017.02103.Google Scholar
  52. Schwarz, N. (2007). Attitude construction: evaluation in context. Social Cognition, 25, 638–656.CrossRefGoogle Scholar
  53. Sheeran, P., Bosch, J. A., Crombez, G., Hall, P. A., Harris, J. L., Papies, E. K., & Wiers, R. W. (2016). Implicit processes in health psychology: diversity and promise. Health Psychology, 35(8), 761–766.CrossRefGoogle Scholar
  54. Singh, S. J., Morgan, M. D., Scott, S., Walters, D., & Hardman, A. E. (1992). Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax, 47(12), 1019–1024.CrossRefGoogle Scholar
  55. Spruit, M. A., Singh, S. J., Garvey, C., Zuwallack, R., Nici, L., Rochester, C., Wouters, E. F., et al. (2013). An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. American Journal of Respiratory and Critical Care Medicine.  https://doi.org/10.1164/rccm.201309-1634st.Google Scholar
  56. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn and Bacon.Google Scholar
  57. Troosters, T., Gosselink, R., & Decramer, M. (1999). Six-minute walking distance in healthy elderly subjects. European Respiratory Journal, 14(2), 270–274.CrossRefGoogle Scholar
  58. Wagenmakers, E., Verhagen, J., Ly, A., Bakker, M., Lee, M. D., Matzke, D., Morey, R. D., et al. (2015). A power fallacy. Behavior Research Methods, 47(4), 913–917.CrossRefGoogle Scholar
  59. Wittenbrink, B., Judd, C. M., & Park, B. (2001). Spontaneous prejudice in context: variability in automatically activated attitudes. Journal of Personality and Social Psychology, 81, 815–827.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire EpsylonUniv. MontpellierMontpellierFrance
  2. 2.Groupe 5 SantéLes Cliniques du Souffle ®ToulougesFrance
  3. 3.Faculty of Physical Education and RecreationUniversity of AlbertaEdmontonCanada

Personalised recommendations