Advertisement

Relationships between performance test and match-related physical performance parameters

A study in professional soccer players across three seasons
  • Stefan Altmann
  • Maximilian Kuberczyk
  • Steffen Ringhof
  • Rainer Neumann
  • Alexander Woll
Main Article

Abstract

Background

The purpose of this study was to analyze the relationship between performance test parameters and match-related physical performance in professional soccer players.

Methods

To determine physical capacity, 28 male soccer players underwent several performance tests at the start of the seasons 2013/2014, 2014/2015, and 2015/2016. The following parameters were assessed: maximum running velocity (vmax), fixed (v4mmol/l) and individual anaerobic threshold (vIAS) during an incremental treadmill test; 30-m sprint time in a linear sprint test (LS30m); in a repeated-sprint test, the 30-m sprint time (RST30m) and performance decrement (RSTdecr); and countermovement jump height (CMJ). Match physical performance was quantified during the first ten official matches of each season using a computerized, camera-based tracking system. The following measures of match physical performance were considered: top running speed (TS), mean running speed (vØ), total distance covered (TD), number of sprints (SP), number of high-intensity running (HIR), and aerial duels won (AD+). Pearson correlation coefficients were used for statistical analysis.

Results

Moderate to very large correlations were found between the majority of performance test parameters and match performance variables, with a variability of correlations across the three seasons. Large relationships across all three seasons were only observed between vmax and TD, vmax and vØ, LS30m and TS as well as RST30m and TS.

Conclusion

This study demonstrates the relationship between several performance test parameters and match-related physical performance in professional soccer players, thereby supporting the test parameters’ criterion validity. vmax, LS30m, and RST30m seem to be the most consistent parameters.

Keywords

Exercise test Football Athletic performance Validity Computer assisted image processing 

Zusammenhänge zwischen leistungsdiagnostischen Parametern und physischer Spielleistung

Eine Studie bei Profifußballern über drei Spielzeiten

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war es, den Zusammenhang zwischen Leistungstestparametern und der spielbezogenen körperlichen Leistung bei Berufsfußballern zu analysieren.

Methoden

Zur Bestimmung der körperlichen Leistungsfähigkeit absolvierten 28 männliche Fußballspieler verschiedene Leistungstests zu Beginn der Spielzeiten 2013/2014, 2014/2015 und 2015/2016. Folgende Parameter wurden ermittelt: maximale Laufgeschwindigkeit (vmax), fixe (v4mmol/l) und individuelle anaerobe Schwelle (vIAS) in einem Laufbandstufentest; 30-m-Sprint-Zeit in einem linearen Sprinttest (LS30m); 30-m-Sprint-Zeit (RST30m) und Leistungsrückgang (RSTdecr) in einem Sprintwiederholungstest; Sprunghöhe in einem Countermovement-Jump (CMJ). Die spielbezogene physische Spielleistung wurde während der ersten zehn offiziellen Spiele jeder Spielzeit mithilfe eines computergestützten, kamerabasierten Tracking-Systems quantifiziert. Die folgenden Maße der spielbezogenen physischen Spielleistung wurden berücksichtigt: Spitzenlaufgeschwindigkeit (TS); mittlere Laufgeschwindigkeit (vØ); zurückgelegte Gesamtstrecke (TD); Anzahl der Sprints (SP); Anzahl der hochintensiven Läufe (HIR); gewonnene Luftzweikämpfe (AD+). Für die statistische Analyse wurden Pearson-Korrelationskoeffizienten herangezogen.

Ergebnisse

Moderate bis sehr starke Korrelationen wurden zwischen der Mehrzahl der leistungsdiagnostischen Parameter und der physischen Spielleistung gefunden, wobei eine Variabilität der Korrelationen über die drei Spielzeiten hinweg erkennbar war. Starke Zusammenhänge über alle drei Spielzeiten zeigten sich nur zwischen vmax und TD, vmax und vØ, LS30m und TS sowie RST30m und TS.

Schlussfolgerung

Die vorliegende Studie zeigt den Zusammenhang zwischen verschiedenen leistungsdiagnostischen Parametern und der physischen Spielleistung bei Profifußballern. Damit stützt sie die Kriteriumsvalidität der leistungsdiagnostischen Parameter. vmax, LS30m und RST30m scheinen die beständigsten Parameter zu sein.

Schlüsselwörter

Belastungstest Fußball Sportliche Leistung Validität Computergestützte Bildverarbeitung 

Notes

Acknowledgements

The authors would like to thank OPTA Sports for providing the match data used in this study.

Compliance with ethical guidelines

Conflict of interest

S. Altmann, M. Kuberczyk, S. Ringhof. Neumann and A. Woll declare that they have no competing interests.

The study was approved by the institutional review board and was conducted in accordance with the Declaration of Helsinki. All subjects gave their written informed consent prior to participation.

Supplementary material

12662_2018_519_MOESM1_ESM.docx (34 kb)
Supplementary Table 1. Mean values (±SD) of the performance test and match-related physical performance parameters for all seasons. Supplementary Table 2. Pearson correlations (r) between performance test and match-related physical performance parameters for all seasons.

References

  1. Altmann, S., Hoffmann, M., Kurz, G., Neumann, R., Woll, A., & Haertel, S. (2015). Different starting distances affect 5‑m sprint times. Journal of strength and conditioning research, 29(8), 2361–2366.  https://doi.org/10.1519/JSC.0000000000000865.CrossRefPubMedGoogle Scholar
  2. Altmann, S., Spielmann, M., Engel, F. A., Neumann, R., Ringhof, S., Oriwol, D., & Haertel, S. (2017). Validity of single-beam timing lights at different heights. Journal of strength and conditioning research, 31(7), 1994–1999.  https://doi.org/10.1519/JSC.0000000000001889.CrossRefPubMedGoogle Scholar
  3. Aquino, R., Palucci Vieira, L. H., de Paula Oliveira, L., Cruz Goncalves, L. G., & Pereira Santiago, P. R. (2017). Relationship between field tests and match running performance in high-level young brazilian soccer players. The journal of sports medicine and physical fitness.  https://doi.org/10.23736/S0022-4707.17.06651-8.Google Scholar
  4. Balsom, P. D., Ekblom, B., & Sjödin, B. (1994). Enhanced oxygen availability during high intensity intermittent exercise decreases anaerobic metabolite concentrations in blood. Acta physiologica Scandinavica, 150(4), 455–456.  https://doi.org/10.1111/j.1748-1716.1994.tb09711.x.CrossRefPubMedGoogle Scholar
  5. Bradley, P. S., Sheldon, W., Wooster, B., Olsen, P., Boanas, P., & Krustrup, P. (2009). High-intensity running in English FA Premier League soccer matches. Journal of sports sciences, 27(2), 159–168.  https://doi.org/10.1080/02640410802512775.CrossRefPubMedGoogle Scholar
  6. Bradley, P. S., Carling, C., Archer, D., Roberts, J., Dodds, A., Di Mascio, M., Krustrup, P., et al. (2011a). The effect of playing formation on high-intensity running and technical profiles in English FA Premier League soccer matches. Journal of sports sciences, 29(8), 821–830.  https://doi.org/10.1080/02640414.2011.561868.CrossRefPubMedGoogle Scholar
  7. Bradley, P. S., Mohr, M., Bendiksen, M., Randers, M. B., Flindt, M., Barnes, C., Krustrup, P., et al. (2011b). Sub-maximal and maximal Yo-Yo intermittent endurance test level 2: heart rate response, reproducibility and application to elite soccer. European journal of applied physiology, 111(6), 969–978.  https://doi.org/10.1007/s00421-010-1721-2.CrossRefPubMedGoogle Scholar
  8. Bradley, P. S., Carling, C., Gomez Diaz, A., Hood, P., Barnes, C., Ade, J., Mohr, M., et al. (2013). Match performance and physical capacity of players in the top three competitive standards of English professional soccer. Human movement science, 32(4), 808–821.  https://doi.org/10.1016/j.humov.2013.06.002.CrossRefPubMedGoogle Scholar
  9. Bradley, P. S., Bendiksen, M., Dellal, A., Mohr, M., Wilkie, A., Datson, N., Krustrup, P., et al. (2014). The application of the Yo-Yo intermittent endurance level 2 test to elite female soccer populations. Scandinavian journal of medicine & science in sports, 24(1), 43–54.  https://doi.org/10.1111/j.1600-0838.2012.01483.x.CrossRefGoogle Scholar
  10. Buchheit, M., Mendez-Villanueva, A., Simpson, B. M., & Bourdon, P. C. (2010). Match running performance and fitness in youth soccer. International journal of sports medicine, 31(11), 818–825.  https://doi.org/10.1055/s-0030-1262838.CrossRefPubMedGoogle Scholar
  11. Buchheit, M., Simpson, B. M., & Mendez-Villanueva, A. (2013). Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. International journal of sports medicine, 34(1), 40–48.  https://doi.org/10.1055/s-0032-1316363.PubMedGoogle Scholar
  12. Bush, M. D., Archer, D. T., Hogg, R., & Bradley, P. S. (2015). Factors influencing physical and technical variability in the English Premier League. International journal of sports physiology and performance, 10(7), 865–872.  https://doi.org/10.1123/ijspp.2014-0484.CrossRefPubMedGoogle Scholar
  13. Carling, C. (2010). Analysis of physical activity profiles when running with the ball in a professional soccer team. Journal of sports sciences, 28(3), 319–326.  https://doi.org/10.1080/02640410903473851.CrossRefPubMedGoogle Scholar
  14. Carling, C. (2011). Influence of opposition team formation on physical and skill-related performance in a professional soccer team. European journal of sport science, 11(3), 155–164.  https://doi.org/10.1080/17461391.2010.499972.CrossRefGoogle Scholar
  15. Castagna, C., Impellizzeri, F., Cecchini, E., Rampinini, E., & Alvarez, J. C. B. (2009). Effects of intermittent-endurance fitness on match performance in young male soccer players. Journal of strength and conditioning research, 23(7), 1954–1959.  https://doi.org/10.1519/JSC.0b013e3181b7f743.CrossRefPubMedGoogle Scholar
  16. Castagna, C., Manzi, V., Impellizzeri, F., Weston, M., & Barbero Alvarez, J. C. (2010). Relationship between endurance field tests and match performance in young soccer players. Journal of strength and conditioning research, 24(12), 3227–3233.  https://doi.org/10.1519/JSC.0b013e3181e72709.CrossRefPubMedGoogle Scholar
  17. Chamari, K., Hachana, Y., Ahmed, Y. B., Galy, O., Sghaïer, F., Chatard, J.-C., & Wisløff, U. (2004). Field and laboratory testing in young elite soccer players. British journal of sports medicine, 38(2), 191–196.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chyron Hego (2018). TRACAB technology description: DFL Google Scholar
  19. Currell, K., & Jeukendrup, A. E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports medicine, 38(4), 297–316.  https://doi.org/10.2165/00007256-200838040-00003.CrossRefPubMedGoogle Scholar
  20. Dawson, B. (2012). Repeated-sprint ability: Where are we? International journal of sports physiology and performance, 7(3), 285–289.CrossRefPubMedGoogle Scholar
  21. DFL (2014). Definitionskatalog Offizielle Spieldaten version 3.0: [Definition catalogue official match data version 3.0] Google Scholar
  22. Faude, O., Schlumberg, A., Fritsche, T., Treff, G., & Meyer, T. (2010). Leistungsdiagnostische Testverfahren im Fußball – methodische Standards [Performance diagnosis in football – methodological standards]. Deutsche Zeitschrift für Sportmedizin, 61(6), 129–133.Google Scholar
  23. Fernandes-da-Silva, J., Castagna, C., Teixeira, A. S., Carminatti, L. J., & Guglielmo, L. G. A. (2016). The peak velocity derived from the Carminatti Test is related to physical match performance in young soccer players. Journal of sports sciences, 34(24), 2238–2245.  https://doi.org/10.1080/02640414.2016.1209307.CrossRefPubMedGoogle Scholar
  24. Al Haddad, H., Simpson, B. M., & Buchheit, M. (2015). Monitoring changes in jump and sprint performance: best or average values? International journal of sports physiology and performance, 10(7), 931–934.  https://doi.org/10.1123/ijspp.2014-0540.CrossRefPubMedGoogle Scholar
  25. Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports medicine, 44(Suppl 2), S139–S147.  https://doi.org/10.1007/s40279-014-0253-z.CrossRefPubMedGoogle Scholar
  26. Hopkins, W. G. (2002). A scale of magnitudes for effect statistics. A new view of statistics, 502 Google Scholar
  27. Hopkins, W. G., Schabort, E. J., & Hawley, J. A. (2001). Reliability of power in physical performance tests. Sports medicine, 31(3), 211–234.CrossRefPubMedGoogle Scholar
  28. Hoppe, M. W., Baumgart, C., Sperlich, B., Ibrahim, H., Jansen, C., Willis, S. J., & Freiwald, J. (2013). Comparison between three different endurance tests in professional soccer players. Journal of strength and conditioning research, 27(1), 31–37.  https://doi.org/10.1519/JSC.0b013e31824e1711.CrossRefPubMedGoogle Scholar
  29. Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., Bangsbo, J., et al. (2003). The yo-yo intermittent recovery test: physiological response, reliability, and validity. Medicine and science in sports and exercise, 35(4), 697–705.  https://doi.org/10.1249/01.MSS.0000058441.94520.32.CrossRefPubMedGoogle Scholar
  30. Liu, H., Hopkins, W., Gómez, A. M., & Molinuevo, S. J. (2013). Inter-operator reliability of live football match statistics from OPTA sportsdata. International Journal of Performance Analysis in Sport, 13(3), 803–821.  https://doi.org/10.1080/24748668.2013.11868690.CrossRefGoogle Scholar
  31. Mackenzie, R., & Cushion, C. (2013). Performance analysis in football: a critical review and implications for future research. Journal of sports sciences, 31(6), 639–676.  https://doi.org/10.1080/02640414.2012.746720.CrossRefPubMedGoogle Scholar
  32. Massard, T., Eggers, T., & Lovell, R. (2017). Peak speed determination in football: is sprint testing necessary? Science and medicine in football, 10, 1–4.  https://doi.org/10.1080/24733938.2017.1398409.CrossRefGoogle Scholar
  33. Mendez-Villanueva, A., & Buchheit, M. (2011). Physical capacity-match physical performance relationships in soccer: simply, more complex. European journal of applied physiology, 111(9), 2387–2389.  https://doi.org/10.1007/s00421-011-1868-5.CrossRefPubMedGoogle Scholar
  34. Mendez-Villanueva, A., Buchheit, M., Simpson, B., Peltola, E., & Bourdon, P. (2011). Does on-field sprinting performance in young soccer players depend on how fast they can run or how fast they do run? Journal of strength and conditioning research, 25(9), 2634–2638.  https://doi.org/10.1519/JSC.0b013e318201c281.CrossRefPubMedGoogle Scholar
  35. Mohr, M., Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of sports sciences, 21(7), 519–528.  https://doi.org/10.1080/0264041031000071182.CrossRefPubMedGoogle Scholar
  36. Mohr, M., Nybo, L., Grantham, J., & Racinais, S. (2012). Physiological responses and physical performance during football in the heat. PLoS ONE, 7(6), e39202.  https://doi.org/10.1371/journal.pone.0039202.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Oliver, J. L. (2009). Is a fatigue index a worthwhile measure of repeated sprint ability? Journal of science and medicine in sport, 12(1), 20–23.  https://doi.org/10.1016/j.jsams.2007.10.010.CrossRefPubMedGoogle Scholar
  38. Pekas, D., Trajković, N., & Krističević, T. (2016). Relation between fitness tests and match performance in junior soccer players. Sport science, 9(suppl 2), 88–92.Google Scholar
  39. Pyne, D. B., Saunders, P. U., Montgomery, P. G., Hewitt, A. J., & Sheehan, K. (2008). Relationships between repeated sprint testing, speed, and endurance. Journal of strength and conditioning research, 22(5), 1633–1637.  https://doi.org/10.1519/JSC.0b013e318181fe7a.CrossRefPubMedGoogle Scholar
  40. Rampinini, E., Bishop, D., Marcora, S. M., Ferrari Bravo, D., Sassi, R., & Impellizzeri, F. M. (2007a). Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. International journal of sports medicine, 28(3), 228–235.  https://doi.org/10.1055/s-2006-924340.CrossRefPubMedGoogle Scholar
  41. Rampinini, E., Coutts, A. J., Castagna, C., Sassi, R., & Impellizzeri, F. M. (2007b). Variation in top level soccer match performance. International journal of sports medicine, 28(12), 1018–1024.  https://doi.org/10.1055/s-2007-965158.CrossRefPubMedGoogle Scholar
  42. Rebelo, A., Brito, J., Seabra, A., Oliveira, J., & Krustrup, P. (2014). Physical match performance of youth football players in relation to physical capacity. European journal of sport science, 14(suppl 1), S148–S156.  https://doi.org/10.1080/17461391.2012.664171.CrossRefPubMedGoogle Scholar
  43. Redwood-Brown, A., O’Donoghue, P., Robinson, G., & Neilson, P. (2017). The effect of score-line on work-rate in English FA Premier League soccer. International Journal of Performance Analysis in Sport, 12(2), 258–271.  https://doi.org/10.1080/24748668.2012.11868598.CrossRefGoogle Scholar
  44. Roecker, K., Striegel, H., & Dickhuth, H.-H. (2003). Heart-rate recommendations: transfer between running and cycling exercise? International journal of sports medicine, 24(3), 173–178.  https://doi.org/10.1055/s-2003-39087.CrossRefPubMedGoogle Scholar
  45. Di Salvo, V., Gregson, W., Atkinson, G., Tordoff, P., & Drust, B. (2009). Analysis of high intensity activity in Premier League soccer. International journal of sports medicine, 30(3), 205–212.  https://doi.org/10.1055/s-0028-1105950.CrossRefPubMedGoogle Scholar
  46. Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of soccer: an update. Sports medicine, 35(6), 501–536.CrossRefPubMedGoogle Scholar
  47. Svensson, M., & Drust, B. (2005). Testing soccer players. Journal of sports sciences, 23(6), 601–618.  https://doi.org/10.1080/02640410400021294.CrossRefPubMedGoogle Scholar
  48. Trewin, J., Meylan, C., Varley, M. C., & Cronin, J. (2017). The influence of situational and environmental factors on match-running in soccer: a systematic review. Science and medicine in football, 1(2), 183–194.  https://doi.org/10.1080/24733938.2017.1329589.CrossRefGoogle Scholar
  49. Turner, A., Walker, S., Stembridge, M., Coneyworth, P., Reed, G., Birdsey, L., & Moody, J. (2011). A testing battery for the assessment of fitness in soccer players. Strength and conditioning journal, 33(5), 29–39.  https://doi.org/10.1519/SSC.0b013e31822fc80a.CrossRefGoogle Scholar
  50. Wasserman, K., Hansen, J. E., Sue, D. Y., Casaburi, R., & Whipp, B. J. (1999). Principles of exercise testing and interpretation. Baltimore: Lippincott Williams & Wilkins.Google Scholar
  51. Wisløff, U., Castagna, C., Helgerud, J., Jones, R., & Hoff, J. (2004). Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. British journal of sports medicine, 38(3), 285–288.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department for Performance Analysis, Institute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Karlsruher Sport-ClubKarlsruheGermany
  3. 3.BioMotion Center, Institute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Department for Social Sciences, Institute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations