Advertisement

Persistent transportation traffic volume estimation with differential privacy

  • Wenjian Yang
  • Yu-E Sun
  • He HuangEmail author
  • Yang Du
  • Danlei Huang
  • Tao Tao
  • Yonglong Luo
Original Research
  • 8 Downloads

Abstract

Traffic volume estimation is critical to the transportation engineering. Persistent traffic volume reveals the amount of core, stable traffic at locations of interest, which is meaningful to many transportation applications, such as traffic flow guidance system. Unfortunately, most of the existing state-of-the-art studies that concentrate on the persistent traffic estimation issue only provide limited privacy preservation. To tackle this challenge, we first present two schemes with differential privacy respectively for estimating the persistent point traffic volume and the persistent point-to-point traffic volume in this work. Then, we further propose a general scheme with differential privacy for estimating the persistent multi-point traffic volume. We encode the passing vehicles in privacy-preserving data structures by using the random communications between vehicles and Road-Side Units (RSUs). Then, we derive the persistent traffic estimators through mathematical analysis and bitwise operations. We also prove that the proposed privacy-preserving mechanism can achieve \(\epsilon\)-differential privacy for protecting the location and trajectory privacy of vehicles through rigorous theoretical analysis. The experimental results based on the real transportation traffic traces data demonstrate the effectiveness of the proposed schemes.

Keywords

Persistent traffic Traffic volume estimation Privacy preserving Differential privacy 

Notes

Acknowledgements

The research of authors is partially supported by National Natural Science Foundation of China (NSFC) under Grant nos. 61672369, 61873177, 61572342.

References

  1. Cao J, Chen A, Bu T (2008) A quasi-likelihood approach for accurate traffic matrix estimation in a high speed network. In: Proceedings of the 27th annual IEEE international conference on computer communications (IEEE INFOCOM 2008), pp 21–25. https://doi.org/10.1109/INFOCOM.2008.13
  2. Castro-Neto M, Jeong Y, Jeong MK, Han LD (2009) AADT prediction using support vector regression with data-dependent parameters. Expert Syst Appl 36(2):2979–2986.  https://doi.org/10.1016/j.eswa.2008.01.073 CrossRefGoogle Scholar
  3. Chen C, Zhang D, Ma X, Guo B, Wang L, Wang Y, Sha E (2017) Crowddeliver: planning city-wide package delivery paths leveraging the crowd of taxis. IEEE Trans Intell Transp Syst 18(6):1478–1496.  https://doi.org/10.1109/TITS.2016.2607458 CrossRefGoogle Scholar
  4. Chen C, Jiao S, Zhang S, Liu W, Feng L, Wang Y (2018) TripImputor: real-time imputing taxi trip purpose leveraging multi-sourced urban data. IEEE Trans Intell Trans Syst 19(10):3292–3304.  https://doi.org/10.1109/TITS.2017.2771231 CrossRefGoogle Scholar
  5. Chen C, Ding Y, Xie X, Zhang S, Wang Z, Feng L (2019) TrajCompressor: an online map-matching-based trajectory compression framework leveraging vehicle heading direction and change. In: IEEE transactions on intelligent transportation systems, early access.  https://doi.org/10.1109/TITS.2019.2910591
  6. Eom JK, Park MS, Heo TY (1968) Huntsinger LF (2006) Improving the prediction of annual average daily traffic for nonfreeway facilities by applying a spatial statistical method. Transp Res Rec 1:20–29.  https://doi.org/10.1177/0361198106196800103 CrossRefGoogle Scholar
  7. Erlingsson Ú, Pihur V, Korolova A (2014) Rappor: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC conference on computer and communications security, pp 1054–1067. https://doi.org/10.1145/2660267.2660348
  8. Gong L, Zhao Y, Xiang C, Li Z, Qian C, Yang P (2018) Robust light-weight magnetic-based door event detection with smartphones. In: IEEE transactions on mobile computing, early access.  https://doi.org/10.1109/TMC.2018.2876841 CrossRefGoogle Scholar
  9. Huang H, Sun YE, Chen S, Xu H, Zhou Y (2017) Persistent traffic measurement through vehicle-to-infrastructure communications. In: Proceedings of the 2017 IEEE 37th international conference on distributed computing systems (IEEE ICDCS 2017), pp 394–403.  https://doi.org/10.1109/ICDCS.2017.327
  10. Huang H, Sun YE, Chen S, Tang S, Han K, Yuan J, Yang W (2018) You can drop but you can’t hide: \(k\)-persistent spread estimation in high-speed networks. In: Proceedings of the 37th annual IEEE international conference on computer communications (IEEE INFOCOM 2018), pp 1889–1897.  https://doi.org/10.1109/INFOCOM.2018.8485998
  11. ITU-T (2019) Information technology—open systems interconnection—the directory: public-key and attribute certificate frameworks. https://www.itu.int/rec/T-REC-X.509. Accessed 9 Nov 2019
  12. Lam WH, Xu J (2000) Estimation of AADT from short period counts in Hong Kong—a comparison between neural network method and regression analysis. J Adv Transp 34(2):249–268.  https://doi.org/10.1002/atr.5670340205 CrossRefGoogle Scholar
  13. Li T, Chen S, Qiao Y (2012) Origin-destination flow measurement in high-speed networks. In: Proceedings of the 31st annual IEEE international conference on computer communications (IEEE INFOCOM 2012), pp 2526–2530. https://doi.org/10.1109/INFCOM.2012.6195645
  14. Lou Y, Yin Y (2010) A decomposition scheme for estimating dynamic origin-destination flows on actuation-controlled signalized arterials. Transp Res Part C Emerg Technol 18(5):643–655.  https://doi.org/10.1016/j.trc.2009.06.005 CrossRefGoogle Scholar
  15. Lu N, Cheng N, Zhang N, Shen X, Mark JW (2014) Connected vehicles: solutions and challenges. IEEE Internet Things J 1(4):289–299.  https://doi.org/10.1109/JIOT.2014.2327587 CrossRefGoogle Scholar
  16. Mohamad D, Sinha KC, Kuczek T, Scholer CF (1998) Annual average daily traffic prediction model for county roads. Transp Res Rec 1617(1):69–77.  https://doi.org/10.3141/1617-10 CrossRefGoogle Scholar
  17. Morgan YL (2010) Notes on DSRC and WAVE standards suite: its architecture, design, and characteristics. IEEE Commun Surv Tutor 12(4):504–518.  https://doi.org/10.1109/surv.2010.033010.00024 MathSciNetCrossRefGoogle Scholar
  18. Pan M, Li P, Fang Y (2012) Cooperative communication aware link scheduling for cognitive vehicular networks. IEEE J Sel Areas Commun 30(4):760–768.  https://doi.org/10.1109/jsac.2012.120510 CrossRefGoogle Scholar
  19. Sun J, Zhang C, Zhang Y, Fang Y (2010) An identity-based security system for user privacy in vehicular ad hoc networks. IEEE Trans Parallel Distrib Syst 21(9):1227–1239.  https://doi.org/10.1109/tpds.2010.14 CrossRefGoogle Scholar
  20. Sun YE, Huang H, Chen S, Zhou Y, Han K, Yang W (2019) Privacy-preserving estimation of \(k\)-persistent traffic in vehicular cyber-physical systems. IEEE Internet Things J 6(5):8296–8309.  https://doi.org/10.1109/JIOT.2019.2916349 CrossRefGoogle Scholar
  21. Tsapakis I, Schneider WH IV, Nichols AP (2013) A bayesian analysis of the effect of estimating annual average daily traffic for heavy-duty trucks using training and validation data-sets. Transp Plan Technol 36(2):201–217.  https://doi.org/10.1080/03081060.2013.770944 CrossRefGoogle Scholar
  22. Wan C, Zhang J (2018) Efficient identity-based data transmission for VANET. J Ambient Intell Humaniz Comput 9(6):1861–1871.  https://doi.org/10.1007/s12652-017-0650-x CrossRefGoogle Scholar
  23. Xiang C, Yang P, Tian C, Zhang L, Lin H, Xiao F, Zhang M, Liu Y (2015) CARM: crowd-sensing accurate outdoor RSS maps with error-prone smartphone measurements. IEEE Trans Mob Comput 15(11):2669–2681.  https://doi.org/10.1109/TMC.2015.2508814 CrossRefGoogle Scholar
  24. Yang B, Wang SG, Bao Y (2011) Efficient local AADT estimation via SCAD variable selection based on regression models. In: Proceedings of the 2011 Chinese control and decision conference (CCDC 2011), IEEE, pp 1898–1902. https://doi.org/10.1109/CCDC.2011.5968510
  25. Zhang Y, Roughan M, Duffield N, Greenberg A (2003a) Fast accurate computation of large-scale ip traffic matrices from link loads. ACM SIGMETRICS Perform Eval Rev 31(1):206–217.  https://doi.org/10.1145/885651.781053 CrossRefGoogle Scholar
  26. Zhang Y, Roughan M, Lund C, Donoho D (2003b) An information-theoretic approach to traffic matrix estimation. In: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications, ACM, pp 301–312.  https://doi.org/10.1145/863955.863990
  27. Zhou Y, Chen S, Mo Z, Yin Y (2013a) Privacy preserving origin-destination flow measurement in vehicular cyber-physical systems. In: Proceedings of the 2013 IEEE 1st international conference on cyber-physical systems, networks, and applications (IEEE CPSNA 2013), pp 32–37.  https://doi.org/10.1109/CPSNA.2013.6614243
  28. Zhou Y, Xiao Q, Mo Z, Chen S, Yin Y (2013b) Privacy-preserving point-to-point transportation traffic measurement through bit array masking in intelligent cyber-physical road systems. In: Proceedings of the 2013 IEEE international conference on cyber, physical and social computing (IEEE CPSCom 2013), pp 826–833.  https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.146
  29. Zhou Y, Chen S, Mo Z, Xiao Q (2015a) Point-to-point traffic volume measurement through variable-length bit array masking in vehicular cyber-physical systems. In: Proceedings of the 2015 IEEE 35th international conference on distributed computing systems (IEEE ICDCS 2015), pp 51–60.  https://doi.org/10.1109/ICDCS.2015.14
  30. Zhou Y, Chen S, Zhou Y, Chen M, Xiao Q (2015b) Privacy-preserving multi-point traffic volume measurement through vehicle-to-infrastructure communications. IEEE Trans Veh Technol 64(12):5619–5630.  https://doi.org/10.1109/TVT.2015.2487985 CrossRefGoogle Scholar
  31. Zhou Y, Mo Z, Xiao Q, Chen S, Yin Y (2016) Privacy-preserving transportation traffic measurement in intelligent cyber-physical road systems. IEEE Trans Veh Technol 65(5):3749–3759.  https://doi.org/10.1109/TVT.2015.2436395 CrossRefGoogle Scholar
  32. Zhu X, Jiang S, Wang L, Li H (2014a) Efficient privacy-preserving authentication for vehicular ad hoc networks. IEEE Trans Veh Technol 63(2):907–919.  https://doi.org/10.1109/TVT.2013.2294032 CrossRefGoogle Scholar
  33. Zhu Y, Wu Y, Li B (2014b) Vehicular ad hoc networks and trajectory-based routing. In: Mukhopadhyay S (eds) Internet of things. Smart sensors, measurement and instrumentation, vol 9, Springer, Cham, pp 143–167. https://doi.org/10.1007/978-3-319-04223-7_6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.School of Rail TransportationSoochow UniversitySuzhouChina
  3. 3.School of Computer and Information Science and EngineeringUniversity of FloridaGainesvilleUSA
  4. 4.School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  5. 5.School of Computer and InformationAnhui Normal UniversityWuhuChina

Personalised recommendations