Advertisement

Fuzzy logic expert system for selecting robotic hands using kinematic parameters

  • Salvador Cobos-Guzman
  • Elena Verdú
  • Enrique Herrera-Viedma
  • Rubén González CrespoEmail author
Original Research
  • 19 Downloads

Abstract

Industry 4.0 is the current industrial revolution and robotics is an important factor for carrying out high dexterity manipulations. However, mechatronic systems are far from human capabilities and sophisticated robotic hands are highly priced. This paper describes a Fuzzy Logic Expert System (FLES) to map kinematic parameters from robotic hand features to the level of dexterity. The final goal is to obtain the adequate robotic hand that can do ranges of specific tasks according to the level of dexterity required. The FLES uses important kinematic parameters of the human hand/robotic hand: number of fingers, number of Degrees of Freedom (DoF), and number of contacts that grasping involves. As a result, several robotic hands are evaluated using the FLES to determine the type of dexterity task that corresponds to each robotic hand.

Keywords

Fuzzy logic Expert system Robotic hand Robotic hands selection 

Notes

References

  1. Adnan MRHM, Sarkheyli A, Zain AM, Haron H (2015) Fuzzy logic for modeling machining process: a review. Artif Intell Rev 43:345–379.  https://doi.org/10.1007/s10462-012-9381-8 CrossRefGoogle Scholar
  2. Barai RK, Nonami K (2008) Locomotion control of a hydraulically actuated hexapod robot by robust adaptive fuzzy control with self-tuned adaptation gain and dead zone fuzzy pre-compensation. J Intell Robot Syst 53:35–56.  https://doi.org/10.1007/s10846-008-9231-8 CrossRefGoogle Scholar
  3. Bekey GA, Tomovic R, Zeljkovic I (1990) Control architecture for the belgrade/USC hand. In: Dextrous robot hands. Springer, New York, pp 136–149.  https://doi.org/10.1007/978-1-4613-8974-3_7 CrossRefGoogle Scholar
  4. Benamina M, Atmani B, Benbelkacem S (2018) Diabetes diagnosis by case-based reasoning and fuzzy logic. Int J Interact Multimed Artif Intell 5:72–80.  https://doi.org/10.9781/ijimai.2018.02.001 Google Scholar
  5. Bicchi A (2000) Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans Robot Autom 16:652–662.  https://doi.org/10.1109/70.897777 CrossRefGoogle Scholar
  6. Butterfass J, Hirzinger G, Knoch S, Liu H (1998) DLR’s Multisensory articulated Hand Part I: Hardware and Software Architecture, In: Proceedings of IEEE international conference on robotics and automation, Leuven Belgium pp. 2081–2086Google Scholar
  7. Butterfass J, Grebenstein M, Liu H, Hirzinger G (2001) DLR-Hand II: next generation of a dextrous robot hand. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No.01CH37164), vol 1, pp 109–114.  https://doi.org/10.1109/ROBOT.2001.932538
  8. Caffaz A, Cannata G (1998) The design and development of the DIST-Hand dextrous gripper. In: Proceedings 1998 IEEE international conference on robotics and automation (Cat. No.98CH36146), vol. 3, pp 2075–2080.  https://doi.org/10.1109/ROBOT.1998.680623
  9. Cobos S, Ferre M, Sánchez-Urán M, Ortego J, Aracil R (2010) Human hand descriptions and gesture recognition for object manipulation. Comput Methods Biomech Biomed Engin 13:305–317.  https://doi.org/10.1080/10255840903208171 CrossRefGoogle Scholar
  10. Cueva-Fernandez G, Espada JP, García-Díaz V, Crespo RG, Garcia-Fernandez N (2016) Fuzzy system to adapt web voice interfaces dynamically in a vehicle sensor tracking application definition. Soft Comput 20:3321–3334.  https://doi.org/10.1007/s00500-015-1709-2 CrossRefGoogle Scholar
  11. Dai JS, Wang D, Cui L (2009) Orientation and workspace analysis of the multifingered metamorphic hand-metahand. IEEE Trans Robot 25:942–947.  https://doi.org/10.1109/TRO.2009.2017138 CrossRefGoogle Scholar
  12. Deimel R, Brock O (2016) A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res 35:161–185.  https://doi.org/10.1177/0278364915592961 CrossRefGoogle Scholar
  13. Eusebi A, Fantuzzi C, Melchiorri C, Sandri M, Tonielli A (1994) The UB Hand II control system: design features and experimental results. In: 20th international conference on industrial electronics, control and instrumentation, Bologna, Italy, pp 782–787Google Scholar
  14. Farhane N (2017) Smart algorithms to control a variable speed wind turbine. Int J Interact Multimed Artif Intell. 4:88–95.  https://doi.org/10.9781/ijimai.2017.08.001 Google Scholar
  15. Fateh MM (2010) Robust fuzzy control of electrical manipulators. J Intell Robot Syst 60:415–434.  https://doi.org/10.1007/s10846-010-9430-y CrossRefzbMATHGoogle Scholar
  16. Fukaya N, Toyama S, Asfour T, Dillmann R (2000) Design of the TUAT/Karlsruhe humanoid hand. In: Proceedings 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS 2000) (Cat. No.00CH37113), vol 3, pp 1754–1759.  https://doi.org/10.1109/IROS.2000.895225
  17. Gazeau JP, Zehloul S, Arsicault M, Lallemand JP (2001) The LMS hand: force and position controls in the aim of the fine manipulation of objects. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No.01CH37164), vol 3, pp 2642–2648.  https://doi.org/10.1109/ROBOT.2001.933021
  18. Harish BS (2017) Anomaly based intrusion detection using modified fuzzy clustering. Int J Interact Multimed Artif Intell 4:54–59.  https://doi.org/10.9781/ijimai.2017.05.002 Google Scholar
  19. Jacobsen S, Iversen E, Knutti D, Johnson R, Biggers K (1986) Design of the Utah/M.I.T. dextrous hand. In: 1986 IEEE international conference on robotics and automation proceedings, pp 1520–1532.  https://doi.org/10.1109/ROBOT.1986.1087395
  20. Jakovljevic Z, Petrovic PB, Mikovic VD, Pajic M (2014) Fuzzy inference mechanism for recognition of contact states in intelligent robotic assembly. J Intell Manuf 25:571–587.  https://doi.org/10.1007/s10845-012-0706-x CrossRefGoogle Scholar
  21. Jaya ASM, Hashim SZM, Rahman MNA (2010) Fuzzy logic-based for predicting roughness performance of TiAlN coating. In: 2010 10th international conference on intelligent systems design and applications pp 91–96.  https://doi.org/10.1109/ISDA.2010.5687284
  22. Jutinico CJM, Montenegro-Marin CE, Burgos D, González R (2018) Natural language interface model for the evaluation of ergonomic routines in occupational health (ILENA). J Ambient Intell Humaniz Comput.  https://doi.org/10.1007/s12652-018-0770-y Google Scholar
  23. Kapandji IA (1970) Physiology of the joints. E. & Livingstone S, Edinburg and LondonGoogle Scholar
  24. Kawasaki H, Shimomura H, Shimizu Y (2001) Educational–industrial complex development of an anthropomorphic robot hand “Gifu hand. Adv Robot 15:357–363.  https://doi.org/10.1163/156855301300235913 CrossRefGoogle Scholar
  25. Kinova S (2018) Gripper KG-2, https://www.kinovarobotics.com/en/products/gripper-series/gripper-kg-2. Accessed 28 June 2018
  26. Kor M, Abkhoshk E, Tao D, Chen GL, Modarres H (2010) Modeling and optimization of high chromium alloy wear in phosphate laboratory grinding mill with fuzzy logic and particle swarm optimization technique. Miner Eng 23:713–719.  https://doi.org/10.1016/j.mineng.2010.04.009 CrossRefGoogle Scholar
  27. Lee YK, Shimoyama I (1999) A skeletal framework artificial hand actuated by pneumatic artificial muscles. In: Proceedings 1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C), vol 2, pp 926–931.  https://doi.org/10.1109/ROBOT.1999.772423
  28. Lee DH, Park JH, Park SW, Baeg MH, Bae JH (2017) KITECH-Hand: a highly dexterous and modularized robotic hand. IEEE/ASME Trans Mechatron. 22 876–887.  https://doi.org/10.1109/TMECH.2016.2634602 CrossRefGoogle Scholar
  29. Liu H, Wu K, Meusel P, Seitz N, Hirzinger G, Jin MH, Liu YW, Fan SW, Lan T, Chen ZP (2008) Multisensory five-finger dexterous hand: The DLR/HIT Hand II. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 3692–3697.  https://doi.org/10.1109/IROS.2008.4650624
  30. Lovchik CS, Diftler MA (1999) The Robonaut hand: a dexterous robot hand for space. In: Proceedings 1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C), vol 2, pp 907–912.  https://doi.org/10.1109/ROBOT.1999.772420
  31. Masmoudi MS, Krichen N, Masmoudi M, Derbel N (2016) Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl Soft Comput 49:901–919CrossRefGoogle Scholar
  32. Molano JIR, Lovelle JMC, Montenegro CE, Granados JJR, Crespo RG (2018) Metamodel for integration of internet of things, social networks, the cloud and industry 4.0. J Ambient Intell Humaniz Comput 9:709–723CrossRefGoogle Scholar
  33. Molet T, Boulic R, Rezzonico S, Thalmann D (1999) An architecture for immersive evaluation of complex human tasks. IEEE Trans Robot Autom 15:475–485.  https://doi.org/10.1109/70.768180 CrossRefGoogle Scholar
  34. Namiki A, Imai Y, Ishikawa M, Kaneko M (2003) Development of a high-speed multifingered hand system and its application to catching. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol 3, pp 2666–2671.  https://doi.org/10.1109/IROS.2003.1249273
  35. Okada T (1982) Computer control of multijointed finger system for precise object-handling. IEEE Trans Syst Man Cybern 12:289–299.  https://doi.org/10.1109/TSMC.1982.4308818 CrossRefGoogle Scholar
  36. Paik JK, Shin BH, Bang Y, Shim YB (2012) Development of an anthropomorphic robotic arm and hand for interactive humanoids. J Bionic Eng 9:133–142.  https://doi.org/10.1016/S1672-6529(11)60107-8 CrossRefGoogle Scholar
  37. Parameshwaran R, Praveen Kumar S, Saravanakumar K (2015) An integrated fuzzy MCDM based approach for robot selection considering objective and subjective criteria. Appl Soft Comput 26:31–41.  https://doi.org/10.1016/j.asoc.2014.09.025 CrossRefGoogle Scholar
  38. RG2 Gripper Datasheet (2015) https://www.universal-robots.com/media/1226143/rg2-datasheet-v14.pdf. Accessed 28 June 2018)
  39. Ritter H, Haschke R (2015) Hands, dexterity, and the brain. In: Cheng G (ed) Humanoid robotics and neuroscience: science, engineering and society. CRC Press/Taylor & Francis, Boca Raton. http://www.ncbi.nlm.nih.gov/books/NBK299038/. Accessed 10 May 2018
  40. Rubinger B, Fulford P, Gregoris L (2001) Self-adapting robotic auxiliary hand (SARAH) for SPDM Operations on the International Space Station. In: Proceeding of the 6th international symposium on artificial intelligence and robotics & automation in space: i-SAIRAS 2001, Quebec, Canada, pp 1–4Google Scholar
  41. Robotiq (2018). https://robotiq.com. Accessed 28 June 2018
  42. Salisbury JK, Roth B (1983) Kinematic and force analysis of articulated mechanical hands. J Mech Trans Autom 105:35–41.  https://doi.org/10.1115/1.3267342 CrossRefGoogle Scholar
  43. Schulz S, Pylatiuk C, Bretthauer G (2001) A new ultralight anthropomorphic hand. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No. 01CH37164), vol 3, pp 2437–2441.  https://doi.org/10.1109/ROBOT.2001.932988
  44. Schunk D (2018) http://www.schunk.com. Accessed 28 June 2018
  45. Seraji H, Howard A (2002) Behavior-based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Trans Robot Autom 18:308–321.  https://doi.org/10.1109/TRA.2002.1019461 CrossRefGoogle Scholar
  46. Shadow Robot Company (2018) https://www.shadowrobot.com. Accessed 28 June 2018
  47. Strandberg M, Wahlberg B (2006) A method for grasp evaluation based on disturbance force rejection. IEEE Trans Robot 22:461–469.  https://doi.org/10.1109/TRO.2006.870665 CrossRefGoogle Scholar
  48. Taibi A (2017) Combining fuzzy AHP with GIS and decision rules for industrial site selection. Int J Interact Multimed Artif Intell 4:60–69.  https://doi.org/10.9781/ijimai.2017.06.001 Google Scholar
  49. Townsend W (2000) The BarrettHand grasper—programmably flexible part handling and assembly. Ind Robot 27:181–188.  https://doi.org/10.1108/01439910010371597 CrossRefGoogle Scholar
  50. Waldock A, Carse B (2016) Learnig a robot cotroller using a adaptive hierarchical fuzzy rule-based system. Soft Comput 20:2855–2881.  https://doi.org/10.1007/s00500-015-1688-3 CrossRefGoogle Scholar
  51. Yang D, Zhao J, Gu Y, Wang X, Li N, Jiang L, Liu H, Huang H, Zhao D (2009) An anthropomorphic robot hand developed based on underactuated mechanism and controlled by EMG signals. J Bionic Eng 6:255–263.  https://doi.org/10.1016/S1672-6529(08)60119-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Internacional de La Rioja (UNIR)La RiojaSpain
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations