Advertisement

Melanoma segmentation using bio-medical image analysis for smarter mobile healthcare

  • Uzma JamilEmail author
  • Asma Sajid
  • Majid Hussain
  • Omer Aldabbas
  • Afshan Alam
  • M. Umair Shafiq
Original Research
  • 9 Downloads

Abstract

Dermoscopy is an excellent method of detecting melanoma in its early stages. Skin is the principal organ of human body. It covers bones, muscles and all parts of the body. Melanoma is rare, but it is the most dangerous form of skin cancer. It is curable if it is detectedin its early stages. Digital dermoscopy help dermatologists in theexamination of cancerous skin lesions. It enables doctors to capture microscopic images of moles by using amobile phone, corresponding application or any handy scope device. Segmentation is used to divide the image into different segments. Segmentation, classification and feature extraction are the three fundamental stages of arecognition system that helps in matching the analysis of skin lesion. Melanoma occurs due to the presence of Melanocytes in the body. With the use of dermoscopy, the dermatologists can examine individual lesions more closely. In our paper, we have proposed an approach that can automatically preprocess the image and then segment the lesion.The gradient magnitude of the image is calculatedto filter the images. We have marked the foreground objects to segment the lesion from background precisely. The proposed technique is tested on European dataset of dermoscopic images. Results of segmented images are compared with other competitors to exhibit the superiority of the recommended approach. Matlab 2016a is used for successful simulation of the experiment.

Notes

References

  1. Abbas Q, Fondon I, Rashid M (2011a) “Unsupervised skin” lesions border detection via two-dimensional image analysis. Comput Methods Prog Biomed 104(3):e1–e15CrossRefGoogle Scholar
  2. Abbas Q, Fondón I, Rashid M (2011b) Unsupervised skinlesions border detection via two-dimensional image analysis. Comput Methods Prog Biomed 104(3):e1–e15CrossRefGoogle Scholar
  3. Abbas Q, Garcia IF, Emre Celebi M, Ahmad W, Mushtaq Q (2013) A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Skin Res Technol 19(1):e490–e497CrossRefGoogle Scholar
  4. Abuzaghleh O, Barkana BD, Faezipour M (2015) Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J Translat Eng Health Med 3:1–12CrossRefGoogle Scholar
  5. Akram MU, Tariq A, Khalid S, Javed MY, Abbas S, Yasin UU (2015) Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Aust Phys Eng Sci Med 38(4):643–655CrossRefGoogle Scholar
  6. Akram T, Khan MA, Sharif M, Yasmin M (2018) Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-018-1051-5 Google Scholar
  7. Alendar F, Helppikangas H (2008) Digital dermoscopy-new diagnostics method of analysis on skin melanoma changes. Acta Inform Med 16:46Google Scholar
  8. Argenziano G, Soyer PH, De VG, Carli P, Delfino M (2002) Interactive atlas of dermoscopy CD. RA Medical Publishing and New Media, MilanGoogle Scholar
  9. Barata C, Marques JS, Celebi ME (2013) Towards an automatic bag-of-features model for the classification of dermoscopy images: the influence of segmentation. In: 8th international symposium on image and signal processing and analysis (ISPA) IEEE, pp 274279Google Scholar
  10. Barata RC, Ruela M, Francisco M, Mendona T, Marques J (2014). Two systems for the detection of melanomas in dermoscopy images using texture and color features. EEE Syst J 8:965–979Google Scholar
  11. Celebi ME, Aslandogan YA, Stoecker WV, Iyatomi H, Oka H, Chen X (2007) Unsupervised border detection in dermoscopy images. Skin Res Technol 13(4):454–462CrossRefGoogle Scholar
  12. Celebi ME, Kingravi HA, Iyatomi H et al (2008) Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14(3):347–353CrossRefGoogle Scholar
  13. Chung K, Hyun Y, Choe Do-E (2018) Ambient context-based modeling for health risk assessment using deep neural network. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-018-1033-7 Google Scholar
  14. Emre Celebi M, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G (2015) A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy image analysis. CRC Press, Boca Raton, pp 97–129CrossRefGoogle Scholar
  15. Farhan M, Aslam M, Jabbar S, Khalid S, Kim M (2015) Real-time imaging based assessment model for improving teaching performance and student experience in elearning. J Real-Time Image Process Springer 13:491–504CrossRefGoogle Scholar
  16. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, Englewood CliffsGoogle Scholar
  17. Gonzalez C, Woods RE, Eddins SL(2007) Digital image processing using Matlab, 2nd edn. Prentice Hall, New YorkGoogle Scholar
  18. Gonzalez RC, Woods ER, Eddins SL (2009) Morphological reconstruction. Gatesmark Publishing, KnoxvilleGoogle Scholar
  19. Jamil U, Akram MU, Khalid S, Abbas S, Saleem K (2016) Computer based dermoscopic Melanoma and Nevus image enhancement and segmentation. BioMed Res Int 2016:2082589.  https://doi.org/10.1155/2016/2082589 Google Scholar
  20. Jmail U, Khalid S (2015) Analysis of valuable techniques and algorithms used in automated skin lesion recognition systems. Int J Privacy Health Inf Manag 3(2):95–111Google Scholar
  21. Khalid S, Sajjad S, Jabbar S, Chang H (2015) Accurate and efficient shape matching approach using vocabularies of multi-feature space representations. J Real-Time Image Process Springer 13:449–465 (ISSN: 1861-8200) CrossRefGoogle Scholar
  22. Khalid S et al (2016) Segmentation of skin lesion using Cohen–Daubechies–Feauveau biorthogonal wavelet. SpringerPlus 5:1603.  https://doi.org/10.1186/s40064-016-3211-4 CrossRefGoogle Scholar
  23. Khalid S, Sabir B, Jabbar S, Naveen C (2017) Precise shape matching of large shape datasets using hybrid approach. J Parallel Distrib Comput Elsevier 110:16–30CrossRefGoogle Scholar
  24. Lakmini P, Malasinghe N. Ramzan K, Dahal (2017) Remote patient monitoring: a comprehensive study. J Ambient Intell Human Comput.  https://doi.org/10.1007/s12652-017-0598-x Google Scholar
  25. Raja NSMadhava, Fernandes SL, Satapathy ND,SC, Rajinikanth V (2018) Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-018-0854-8 Google Scholar
  26. Rastgoo M, Lemaitre G, Morel O, Massich J, Garcia R et al (2016) Classification of melanoma lesions using sparse coded features and random forests. SPIE Medical Imaging, San Diego, United StatesGoogle Scholar
  27. Razzaq S, Khalid S (2012) Frameworks for multivariate mmediods based modeling and classification in Euclidean and general feature spaces. Pattern Recogn 45(3):1092–1103CrossRefzbMATHGoogle Scholar
  28. Ruela M, Barata C, Marques JS (2014) What is the role of color symmetry in the detection of melanomas. In: Computer vision techniques for the diagnosis of skin cancer. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-39608-3_3 Google Scholar
  29. Sadeghi M, Lee TK, McLean DI, Lui H, Atkins MS (2013) Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans Med Imaging 32(5):849–861CrossRefGoogle Scholar
  30. Silveira M, Nascimento JC, Marques JS, Marçal AR, Mendonça T, Yamauchi S, Maeda J, Rozeira J (2009) Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Sign Proces 3(1):35–45CrossRefGoogle Scholar
  31. Sumithra R, Suhil M, Guru DS (2015) Segmentation and classification of skin lesions for disease diagnosis. International conference on advanced computing technologies and applications (ICACTA)Google Scholar
  32. Sural S, Qian G, Pramanik S (2002) Segmentation and histogram generation using the HSV color space for image retrieval. IEEE international conference on image processing (ICIP). Marker-Control Watershed Segmentation, MathworksGoogle Scholar
  33. Usman Akram M, Khalid S, Tariq A, Younus Javed M (2013) Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Comput Med Imaging Graph 37:346–357CrossRefGoogle Scholar
  34. Zapirain BG, Arroyo JLG (2014) Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Comput Biol Med 44:144–157CrossRefGoogle Scholar
  35. Zhou H, Schaefer G, Sadka AH, Celebi ME (2009) Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images. IEEE J Sel Top Sign Proces 3(1):26–34CrossRefGoogle Scholar
  36. Zhou H, Li X, Schaefer G, Celebi ME, Miller P (2013) Mean shift based gradient vector ow for image segmentation. Comput Vis Image Underst 117(9):1004–1016CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Uzma Jamil
    • 1
    Email author
  • Asma Sajid
    • 1
  • Majid Hussain
    • 2
  • Omer Aldabbas
    • 3
  • Afshan Alam
    • 1
  • M. Umair Shafiq
    • 1
  1. 1.Department of Computer ScienceGovernment College UniversityFaisalabadPakistan
  2. 2.Department of Computer ScienceCOMSATS Institute of Information TechnologySahiwalPakistan
  3. 3.Faculty of EngineeringAl-Balqa Allied UniversityAmmanJordan

Personalised recommendations