Improved salp swarm algorithm based on particle swarm optimization for feature selection

  • Rehab Ali Ibrahim
  • Ahmed A. Ewees
  • Diego Oliva
  • Mohamed Abd Elaziz
  • Songfeng Lu
Original Research


Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article presents a hybrid optimization method for the FS problem; it combines the slap swarm algorithm (SSA) with the particle swarm optimization. The hybridization between both approaches creates an algorithm called SSAPSO, in which the efficacy of the exploration and the exploitation steps is improved. To verify the performance of the proposed algorithm, it is tested over two experimental series, in the first one, it is compared with other similar approaches using benchmark functions. Meanwhile, in the second set of experiments, the SSAPSO is used to determine the best set of features using different UCI datasets. Where the redundant or the confusing features are removed from the original dataset while keeping or yielding a better accuracy. The experimental results provide the evidence of the enhancement in the SSAPSO regarding the performance and the accuracy without affecting the computational effort.


Salp swarm algorithm Particle swarm optimization Feature selection Global optimization Swarm techniques 



This work is supported by the Science and Technology Program of Shenzhen of China under Grant Nos. JCYJ20170818160208570 and JCYJ20170307160458368.


  1. Al-Ayyoub M, Jararweh Y, Rababah A, Aldwairi M (2017) Feature extraction and selection for arabic tweets authorship authentication. J Ambient Intell Humaniz Comput 8(3):383–393CrossRefGoogle Scholar
  2. Anderson PA, Bone Q (1980) Communication between individuals in salp chains II. Physiology. Proc R Soc Lond B Biol Sci 210(1181):559–574CrossRefGoogle Scholar
  3. Arigbabu OA, Mahmood S, Ahmad SMS, Arigbabu AA (2016) Smile detection using hybrid face representation. J Ambient Intell Humaniz Comput 7(3):415–426CrossRefGoogle Scholar
  4. Awada W, Khoshgoftaar TM, Dittman D, Wald R, Napolitano A (2012) A review of the stability of feature selection techniques for bioinformatics data. In: 2012 IEEE 13th international conference on information reuse and integration (IRI). IEEE, pp 356–363Google Scholar
  5. Chang PC, Lin JJ, Liu CH (2012) An attribute weight assignment and particle swarm optimization algorithm for medical database classifications. Comput Methods Prog Biomed 107(3):382–392CrossRefGoogle Scholar
  6. Chen LH, Yang B, jing Wang S, Wang G, zhong Li H, bin Liu W (2014) Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy. Appl Math Comput 239:180–197MathSciNetzbMATHGoogle Scholar
  7. Chikh R, Chikhi S (2017) Clustered negative selection algorithm and fruit fly optimization for email spam detection. J Ambient Intell Humaniz Comput. Google Scholar
  8. Chuang LY, Yang CH, Yang CH (2009) Tabu search and binary particle swarm optimization for feature selection using microarray data. J Comput Biol 16(12):1689–1703MathSciNetCrossRefGoogle Scholar
  9. Cuevas E, Cienfuegos M (2014) A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Syst Appl 41(2):412–425CrossRefGoogle Scholar
  10. Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 151(1–2):155–176MathSciNetCrossRefzbMATHGoogle Scholar
  11. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro machine and human science, 1995. MHS’95. Proceedings of the Sixth International Symposium on, IEEE, pp 39–43Google Scholar
  12. El Aziz MA, Ewees AA, Hassanien AE (2016) Hybrid swarms optimization based image segmentation. In: Bhattacharyya S, Dutta P, De S, Klepac G (eds) Hybrid soft computing for image segmentation. Springer, Berlin, pp 1–21Google Scholar
  13. El Aziz MA, Hemdan AM, Ewees AA, Elhoseny M, Shehab A, Hassanien AE, Xiong S (2017) Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In: PowerAfrica, 2017 IEEE PES, IEEE, pp 115–120Google Scholar
  14. El Aziz MA, Ewees AA, Hassanien AE (2018a) Multi-objective whale optimization algorithm for content-based image retrieval. Multimed Tools Appl 77:26135–26172CrossRefGoogle Scholar
  15. El Aziz MA, Ewees AA, Hassanien AE, Mudhsh M, Xiong S (2018b) Multi-objective whale optimization algorithm for multilevel thresholding segmentation. In: Hassanien A, Oliva D (eds) Advances in soft computing and machine learning in image processing. Springer, Berlin, pp 23–39CrossRefGoogle Scholar
  16. Elaziz MEA, Ewees AA, Oliva D, Duan P, Xiong S (2017) A hybrid method of sine cosine algorithm and differential evolution for feature selection. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ES (eds) International conference on neural information processing. Springer, Berlin, pp 145–155CrossRefGoogle Scholar
  17. Ewees AA, El Aziz MA, Elhoseny M (2017a) Social-spider optimization algorithm for improving anfis to predict biochar yield. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), IEEE, pp 1–6Google Scholar
  18. Ewees AA, El Aziz MA, Hassanien AE (2017b) Chaotic multi-verse optimizer-based feature selection. Neural Comput Appl. Google Scholar
  19. Ewees AA, Elaziz MA, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172CrossRefGoogle Scholar
  20. Gasca SJARE (2006) Eliminating redundancy and irrelevance using a new mlp-based feature selection method. Pattern Recognit 39(2):313–315MathSciNetCrossRefzbMATHGoogle Scholar
  21. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Machine Learn 3(2):95–99CrossRefGoogle Scholar
  22. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182zbMATHGoogle Scholar
  23. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422CrossRefzbMATHGoogle Scholar
  24. Hafez AI, Hassanien AE, Zawbaa HM, Emary E (2015) Hybrid monkey algorithm with krill herd algorithm optimization for feature selection. In: 2015 11th International computer engineering conference (ICENCO). IEEE, pp 273–277Google Scholar
  25. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, New YorkzbMATHGoogle Scholar
  26. Henschke N, Everett JD, Richardson AJ, Suthers IM (2016) Rethinking the role of salps in the ocean. Trends Ecol Evol 31(9):720–733CrossRefGoogle Scholar
  27. Ibrahim RA, Oliva D, Ewees AA, Lu S (2017) Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ES (eds) International conference on neural information processing. Springer, Berlin, pp 156–166CrossRefGoogle Scholar
  28. Ibrahim RA, Elaziz MA, Ewees AA, Selim IM, Lu S (2018) Galaxy images classification using hybrid brain storm optimization with moth flame optimization. J Astron Telesc Instrum Syst 4(3):038001CrossRefGoogle Scholar
  29. Inbarani HH, Azar AT, Jothi G (2014) Supervised hybrid feature selection based on pso and rough sets for medical diagnosis. Comput Methods Prog Biomed 113(1):175–185CrossRefGoogle Scholar
  30. Jensen R, Goodarzi M, Freitas MP (2009) Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities. J Chem Inf Model 49:824–832CrossRefGoogle Scholar
  31. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial beecolony (abc) algorithm. J Global Optim 39(3):459–471MathSciNetCrossRefzbMATHGoogle Scholar
  32. Karnan M, Thangavel K, Sivakuar R, Geetha K (2006) Ant colony optimization for feature selection and classification of microcalcifications in digital mammograms. In: Advanced Computing and Communications, 2006. ADCOM 2006. International Conference on, IEEE, pp 298–303Google Scholar
  33. Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: Proc AAAI 1992, San Jose, CA, pp 129–134Google Scholar
  34. Kohane IS, Butte AJ, Kho A (2002) Microarrays for an integrative genomics. MIT press, CambridgeGoogle Scholar
  35. Kohavi R (1994) Feature subset selection using the wrapper method, overfitting and dynamic search space topology. In: Proc AAAI Fall Symposium on Relevance, pp 109–113Google Scholar
  36. Kung SY, Luo Y, Mak MW (2010) Feature selection for genomic signal processing: unsupervised, supervised, and self-supervised scenarios. J Signal Process Syst 61(1):3–20CrossRefGoogle Scholar
  37. Lai C, Reinders MJ, Wessels L (2006) Random subspace method for multivariate feature selection. Pattern recognition letters 27(10):1067–1076CrossRefGoogle Scholar
  38. Li X, Wang G (2015) Optimal band selection for hyperspectral data with improved differential evolution. J Ambient Intell Humaniz Comput 6(5):675–688MathSciNetCrossRefGoogle Scholar
  39. Li J, Wong L (2002) Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns. Bioinformatics 18:725–734CrossRefGoogle Scholar
  40. Liu Y, Wang G, Chen H, Dong H, Zhu X, Wang S (2011) An improved particle swarm optimization for feature selection. J Bionic Eng 8(2):191–200CrossRefGoogle Scholar
  41. Madin LP (1990) Aspects of jet propulsion in salps. Can J Zool 68(4):765–777CrossRefGoogle Scholar
  42. Menghour K, Souici-Meslati L (2016) Hybrid aco-pso based approaches for feature selection. Int J Intell Eng Syst 9(3):65–79CrossRefGoogle Scholar
  43. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  44. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRefGoogle Scholar
  45. Modrzejewski M (1993) Feature selection using rough sets theory. In: Proceedings of the European Conference on Machine Learning, Vienna, Austria, pp 213–226Google Scholar
  46. Moradi P, Rostami M (2015) Integration of graph clustering with ant colony optimization for feature selection. Knowl Based Syst 84:144–161CrossRefGoogle Scholar
  47. Neumann J, Schnörr C, Steidl G (2005) Combined svm-based feature selection and classification. Mach Learn 61(1–3):129–150CrossRefzbMATHGoogle Scholar
  48. Niknam T, Amiri B (2010) An efficient hybrid approach based on pso, aco and k-means for cluster analysis. Appl Soft Comput 10(1):183–197CrossRefGoogle Scholar
  49. Noman S, Shamsuddin SM, Hassanien AE (2009) Hybrid learning enhancement of rbf network with particle swarm optimization. In: Hassanien AE, Abraham A, Vasilakos AV, Pedrycz W (eds) Foundations of computational, intelligence, vol 1. Springer, Berlin, pp 381–397Google Scholar
  50. Prabukumar M, Agilandeeswari L, Ganesan K (2017) An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier. J Ambient Intell Humaniz Comput. Google Scholar
  51. Raymer ML, Punch WF, Goodman ED, Kuhn LA, Jain AK (2000) Dimensionality reduction using genetic algorithms. IEEE transactions on evolutionary computation 4(2):164–171CrossRefGoogle Scholar
  52. Rodrigues D, Pereira LA, Nakamura RY, Costa KA, Yang XS, Souza AN, Papa JP (2014) A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Expert Syst Appl 41(5):2250–2258CrossRefGoogle Scholar
  53. Saravanan RA, Rajesh Babu M (2017) Enhanced text mining approach based on ontology for clustering research project selection. J Ambient Intell Humaniz Comput. Google Scholar
  54. Sutherland KR, Weihs D (2017) Hydrodynamic advantages of swimming by salp chains. J R Soc Interface 14(133):20170,298CrossRefGoogle Scholar
  55. Tanaka K, Kurita T, Kawabe T (2007) Selection of import vectors via binary particle swarm optimization and cross-validation for kernel logistic regression. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 07),IEEE, Orlando, Fla, USA, pp 1037–1042Google Scholar
  56. Thangavel K, Velayutham C (2011) Mammogram image analysis: bioinspired computational approach. In: Proceedings of the International Conference on Soft Computing for Problem Solving, pp 20–22Google Scholar
  57. Unler A, Murat A (2010) A discrete particle swarm optimization method for feature selection in binary classification problems. Eur J Oper Res 206(3):528–539CrossRefzbMATHGoogle Scholar
  58. Wang Y, Cen Y, Zhao R, Zhang L, Kan S, Hu S (2018) Compressed sensing based feature fusion for image retrieval. J Ambient Intell Humaniz Comput. Google Scholar
  59. Xie ZX, Hu QH, Yu DR (2006) Improved feature selection algorithm based on svm and correlation. In: International Symposium on Neural Networks. Springer, Berlin, pp 1373–1380Google Scholar
  60. Yamuna G, Thamaraichelvi B (2016) Hybrid firefly swarm intelligence based feature selection for medical data classification and segmentation in svd–nsct domain. Int J Adv Res 4(9):744–760CrossRefGoogle Scholar
  61. Yang Y, Slattery S, Ghani R (2002) A study of approaches to hypertext categorization. J Intell Inform Syst 18(2):219–241CrossRefGoogle Scholar
  62. Yao YY (2003) Information-theoretic measures for knowledge discovery and data mining. In: Karmeshu (ed) Entropy measures, maximum entropy principle and emerging applications. Springer, Berlin, Heidelberg, pp 115–136CrossRefGoogle Scholar
  63. Yeh WC, Yang YT, Lai CM (2016) A hybrid simplified swarm optimization method for imbalanced data feature selection. Aust Acad Bus Econ Rev 2(3):263–275Google Scholar
  64. Zhang H, Sun G (2002) Feature selection using tabu search method. Pattern Recognit 35(3):701–711MathSciNetCrossRefzbMATHGoogle Scholar
  65. Zhong DJN (2001) Using rough sets with heuristics for feature selection. J Intell Inform Syst 16:199–214CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rehab Ali Ibrahim
    • 1
  • Ahmed A. Ewees
    • 2
    • 3
  • Diego Oliva
    • 4
  • Mohamed Abd Elaziz
    • 5
  • Songfeng Lu
    • 1
    • 6
  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.University of BishaBishaKingdom of Saudi Arabia
  3. 3.Department of ComputerDamietta UniversityDamiettaEgypt
  4. 4.Departamento de Ciencias ComputacionalesUniversidad de GuadalajaraGuadalajaraMexico
  5. 5.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt
  6. 6.Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina

Personalised recommendations