Advertisement

A lightweight decentralized service placement policy for performance optimization in fog computing

  • Carlos GuerreroEmail author
  • Isaac Lera
  • Carlos Juiz
Original Research

Abstract

A decentralized optimization policy for service placement in fog computing is presented. The optimization is addressed to place most popular services as closer to the users as possible. The experimental validation is done in the iFogSim simulator and by comparing our algorithm with the simulator’s built-in policy. The simulation is characterized by modeling a microservice-based application for different experiment sizes. Results showed that our decentralized algorithm places most popular services closer to users, improving network usage and service latency of the most requested applications, at the expense of a latency increment for the less requested services and a greater number of service migrations.

Keywords

Fog computing Service placement Performance optimization 

Notes

References

  1. Arkian HR, Diyanat A, Pourkhalili A (2017) Mist: Fog-based data analytics scheme with cost-efficient resource provisioning for iot crowdsensing applications. J Netw Comput Appl 82(Supplement C):152–165.  https://doi.org/10.1016/j.jnca.2017.01.012. http://www.sciencedirect.com/science/article/pii/S1084804517300188
  2. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805CrossRefzbMATHGoogle Scholar
  3. Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices architecture enables devops: migration to a cloud-native architecture. IEEE Softw 33(3):42–52.  https://doi.org/10.1109/MS.2016.64 CrossRefGoogle Scholar
  4. Barcelo M, Correa A, Llorca J, Tulino AM, Vicario JL, Morell A (2016) Iot-cloud service optimization in next generation smart environments. IEEE J Sel Areas Commun 34(12):4077–4090.  https://doi.org/10.1109/JSAC.2016.2621398 CrossRefGoogle Scholar
  5. Billet B, Issarny V (2014) From task graphs to concrete actions: a new task mapping algorithm for the future internet of things. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pp 470–478.  https://doi.org/10.1109/MASS.2014.20
  6. Bittencourt LF, Diaz-Montes J, Buyya R, Rana OF, Parashar M (2017) Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 4(2):26–35.  https://doi.org/10.1109/MCC.2017.27 CrossRefGoogle Scholar
  7. Borst S, Gupta V, Walid A (2010) Distributed caching algorithms for content distribution networks. In: 2010 Proceedings IEEE INFOCOM, pp 1–9.  https://doi.org/10.1109/INFCOM.2010.5461964
  8. Botta A, de Donato W, Persico V, Pescape A (2016) Integration of cloud computing and internet of things: a survey. Future Gener Comput Syst 56((Supplement C)):684–700CrossRefGoogle Scholar
  9. Brogi A, Forti S (2017) Qos-aware deployment of iot applications through the fog. IEEE Internet Things J 4(5):1185–1192.  https://doi.org/10.1109/JIOT.2017.2701408 CrossRefGoogle Scholar
  10. Brogi A, Forti S, Ibrahim A (2017) How to best deploy your fog applications, probably. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp 105–114.  https://doi.org/10.1109/ICFEC.2017.8
  11. Cavalcante E, Pereira J, Alves MP, Maia P, Moura R, Batista T, Delicato FC, Pires PF (2016) On the interplay of internet of things and cloud computing: a systematic mapping study. Comput Commun 89-90(Supplement C):17–33.  https://doi.org/10.1016/j.comcom.2016.03.012. http://www.sciencedirect.com/science/article/pii/S0140366416300706 (internet of Things: Research challenges and Solutions)
  12. Chiang M, Zhang T (2016) Fog and iot: an overview of research opportunities. IEEE Internet Things J 3(6):854–864.  https://doi.org/10.1109/JIOT.2016.2584538 CrossRefGoogle Scholar
  13. Colistra G, Pilloni V, Atzori L (2014) The problem of task allocation in the internet of things and the consensus-based approach. Comput Netw 73(Supplement C):98–111.  https://doi.org/10.1016/j.comnet.2014.07.011. http://www.sciencedirect.com/science/article/pii/S1389128614002655
  14. Darwish A, Hassanien AE (2017) Cyber physical systems design, methodology, and integration: the current status and future outlook. J Ambient Intell Human Comput.  https://doi.org/10.1007/s12652-017-0575-4
  15. Darwish A, Hassanien AE, Elhoseny M, Sangaiah AK, Muhammad K (2017) The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J Ambient Intell Human Comput.  https://doi.org/10.1007/s12652-017-0659-1
  16. Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of things realize its potential. Computer 49(8):112–116.  https://doi.org/10.1109/MC.2016.245 CrossRefGoogle Scholar
  17. Deng R, Lu R, Lai C, Luan TH (2015) Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. In: 2015 IEEE International Conference on Communications (ICC), pp 3909–3914.  https://doi.org/10.1109/ICC.2015.7248934
  18. Diaz M, Martin C, Rubio B (2016) State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing. J Netw Comput Appl 67(Supplement C):99 – 117.  https://doi.org/10.1016/j.jnca.2016.01.010. http://www.sciencedirect.com/science/article/pii/S108480451600028X
  19. Do CT, Tran NH, Pham C, Alam MGR, Son JH, Hong CS (2015) A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing. In: 2015 International Conference on Information Networking (ICOIN), pp 324–329.  https://doi.org/10.1109/ICOIN.2015.7057905
  20. Farris I, Militano L, Nitti M, Atzori L, Iera A (2015) Federated edge-assisted mobile clouds for service provisioning in heterogeneous iot environments. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp 591–596.  https://doi.org/10.1109/WF-IoT.2015.7389120
  21. Gu L, Zeng D, Guo S, Barnawi A, Xiang Y (2017) Cost efficient resource management in fog computing supported medical cyber-physical system. IEEE Trans Emerg Topics Comput 5(1):108–119.  https://doi.org/10.1109/TETC.2015.2508382 CrossRefGoogle Scholar
  22. Guerrero C, Lera I, Juiz C (2013) Performance improvement of web caching in web 2.0 via knowledge discovery. J Syst Softw 86(12):2970–2980.  https://doi.org/10.1016/j.jss.2013.04.060. http://www.sciencedirect.com/science/article/pii/S0164121213001209
  23. Guerrero C, Lera I, Juiz C (2017) Genetic algorithm for multi-objective optimization of container allocation in cloud architecture. J Grid Comput.  https://doi.org/10.1007/s10723-017-9419-x.
  24. Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017) ifogsim: a toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Softw Pract Exper 47(9):1275–1296.  https://doi.org/10.1002/spe.2509.
  25. Huang Z, Lin KJ, Yu SY, Hsu JY (2014a) Co-locating services in iot systems to minimize the communication energy cost. J Innov Digit Ecosyst 1(1):47–57.  https://doi.org/10.1016/j.jides.2015.02.005. http://www.sciencedirect.com/science/article/pii/S2352664515000061
  26. Huang Z, Lin KJ, Yu SY, Hsu JY (2014b) Building energy efficient internet of things by co-locating services to minimize communication. In: Proceedings of the 6th International Conference on Management of Emergent Digital EcoSystems, MEDES ’14, vol 18. ACM, New York, pp 101–108.  https://doi.org/10.1145/2668260.2668270
  27. Ko IY, Ko HG, Molina AJ, Kwon JH (2016) Soiot: Toward a user-centric iot-based service framework. ACM Trans Internet Technol 16(2):8.  https://doi.org/10.1145/2835492 CrossRefGoogle Scholar
  28. Krylovskiy A, Jahn M, Patti E (2015) Designing a smart city internet of things platform with microservice architecture. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp 25–30.  https://doi.org/10.1109/FiCloud.2015.55
  29. Li S, Xu LD, Zhao S (2015) The internet of things: a survey. Inf Syst Front 17(2):243–259CrossRefGoogle Scholar
  30. Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy, survey and future directions. Springer, Singapore, pp 103–130CrossRefGoogle Scholar
  31. Munro I (1971) Efficient determination of the transitive closure of a directed graph. Inf Process Lett 1(2):56–58.  https://doi.org/10.1016/0020-0190(71)90006-8. http://www.sciencedirect.com/science/article/pii/0020019071900068
  32. Ni L, Zhang J, Jiang C, Yan C, Yu K (2017) Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J 4(5):1216–1228.  https://doi.org/10.1109/JIOT.2017.2709814 CrossRefGoogle Scholar
  33. Saurez E, Hong K, Lillethun D, Ramachandran U, Ottenwälder B (2016) Incremental deployment and migration of geo-distributed situation awareness applications in the fog. In: Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems, DEBS ’16. ACM, New York, pp 258–269.  https://doi.org/10.1145/2933267.2933317. http://doi.acm.org/10.1145/2933267.2933317
  34. Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P (2017a) Optimized IoT service placement in the fog. Serv Oriented Comput Appl.  https://doi.org/10.1007/s11761-017-0219-8
  35. Skarlat O, Nardelli M, Schulte S, Dustdar S (2017b) Towards qos-aware fog service placement. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp 89–96.  https://doi.org/10.1109/ICFEC.2017.12
  36. Souza VBC, Ramrez W, Masip-Bruin X, Marn-Tordera E, Ren G, Tashakor G (2016) Handling service allocation in combined fog-cloud scenarios. In: 2016 IEEE International Conference on Communications (ICC), pp 1–5.  https://doi.org/10.1109/ICC.2016.7511465
  37. Taneja M, Davy A (2017) Resource aware placement of IoT application modules in fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp 1222–1228.  https://doi.org/10.23919/INM.2017.7987464
  38. Urgaonkar R, Wang S, He T, Zafer M, Chan K, Leung KK (2015a) Dynamic service migration and workload scheduling in edge-clouds. Perform Eval 91(Supplement C):205–228.  https://doi.org/10.1016/j.peva.2015.06.013. http://www.sciencedirect.com/science/article/pii/S0166531615000619 (special Issue: Performance 2015)
  39. Urgaonkar R, Wang S, He T, Zafer M, Chan K, Leung KK (2015b) Dynamic service migration and workload scheduling in edge-clouds. Perform Eval 91(C):205–228.  https://doi.org/10.1016/j.peva.2015.06.013
  40. Vakali A, Pallis G (2003) Content delivery networks: status and trends. IEEE Int Comput 7(6):68–74.  https://doi.org/10.1109/MIC.2003.1250586 CrossRefGoogle Scholar
  41. Varghese B, Buyya R (2017) Next generation cloud computing: new trends and research directions. Future Gener Comput Syst.  https://doi.org/10.1016/j.future.2017.09.020. http://www.sciencedirect.com/science/article/pii/S0167739X17302224
  42. Velasquez K, Abreu DP, Curado M, Monteiro E (2017) Service placement for latency reduction in the internet of things. Ann Telecommun 72(1):105–115.  https://doi.org/10.1007/s12243-016-0524-9
  43. Venticinque S, Amato A (2018) A methodology for deployment of iot application in fog. J Ambient Intell Human Comput.  https://doi.org/10.1007/s12652-018-0785-4
  44. Vogler M, Schleicher JM, Inzinger C, Dustdar S (2016) A scalable framework for provisioning large-scale iot deployments. ACM Trans Internet Technol 16(2):11.  https://doi.org/10.1145/2850416. http://doi.acm.org/10.1145/2850416
  45. Wang S, Urgaonkar R, Chan K, He T, Zafer M, Leung KK (2015) Dynamic service placement for mobile micro-clouds with predicted future costs. In: 2015 IEEE International Conference on Communications (ICC), pp 5504–5510.  https://doi.org/10.1109/ICC.2015.7249199
  46. Wang S, Zafer M, Leung KK (2017) Online placement of multi-component applications in edge computing environments. IEEE Access 5:2514–2533.  https://doi.org/10.1109/ACCESS.2017.2665971 CrossRefGoogle Scholar
  47. Weaveworks, ContainerSolutions (2016) Socks shop—a microservices demo application. https://microservices-demo.github.io/
  48. Wen Z, Yang R, Garraghan P, Lin T, Xu J, Rovatsos M (2017) Fog orchestration for internet of things services. IEEE Internet Comput 21(2):16–24.  https://doi.org/10.1109/MIC.2017.36 CrossRefGoogle Scholar
  49. Yang L, Cao J, Liang G, Han X (2016) Cost aware service placement and load dispatching in mobile cloud systems. IEEE Trans Comput 65(5):1440–1452.  https://doi.org/10.1109/TC.2015.2435781 MathSciNetCrossRefzbMATHGoogle Scholar
  50. Zeng D, Gu L, Guo S, Cheng Z, Yu S (2016) Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans Comput 65(12):3702–3712.  https://doi.org/10.1109/TC.2016.2536019 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of Balearic IslandsPalmaSpain

Personalised recommendations