Advertisement

A synchronous intertwining logistic map-DNA approach for color image encryption

  • Shelza SuriEmail author
  • Ritu Vijay
Original Research

Abstract

In the past decade, image encryption has emerged as a matter of interest to scientists and researchers. The paper presents a synchronous permutation-diffusion image encryption algorithm using Intertwining Logistic Map (ILM) and Deoxyribonucleic acid (DNA) for color images. The design of the proposed algorithm is simple, secure and efficient. It is mainly composed of two phases: Permutation and Diffusion. In the first phase, the original image pixels are permuted using the 3D chaotic sequence generated by ILM. In the next phase, the permuted pixels from step one are diffused using DNA XOR operation. The implemented approach is faster as permutation and diffusion operations are performed synchronously in a single iteration. The paper evaluates the performance of the proposed approach using various parameters like key sensitivity, entropy, secret key space, contrast analysis, correlation coefficient (CC)—vertical, horizontal and diagonal, Number of Pixel Change Rate (NPCR) and Unified Average Change in Intensity (UACI). The evaluated results show that use of DNA and synchronization feature with ILM exhibits significant improvement in the information entropy, increase in the randomness feature and contrast, high resistance against the varied statistical and differential attacks, and improvement in encryption efficiency.

Keywords

Image encryption Chaos ILM DNA Entropy CC 

Notes

References

  1. Ahmad J, Khan MA, Ahmed F, Khan JS (2017a). A novel image encryption scheme based on orthogonal matrix, skew tent map, and XOR operation. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-2970-3 Google Scholar
  2. Ahmad J, Khan MA, Hwang SO, Khan JS (2017b) A compression sensing and noise-tolerant image encryption scheme based on chaotic maps and orthogonal matrices. Neural Comput Appl 28(1):953–967.  https://doi.org/10.1007/s00521-016-2405-6 Google Scholar
  3. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16(08):2129–2151.  https://doi.org/10.1142/S0218127406015970 MathSciNetzbMATHGoogle Scholar
  4. Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3):749–761.  https://doi.org/10.1016/j.chaos.2003.12.022 MathSciNetzbMATHGoogle Scholar
  5. Enayatifar R, Abdullah AH, Isnin IF (2014) Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng 56:83–93.  https://doi.org/10.1016/j.optlaseng.2013.12.003 Google Scholar
  6. Enayatifar R, Sadaei HJ, Abdullah AH, Lee M, Isnin IF (2015) A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata. Opt Lasers Eng 71:33–41.  https://doi.org/10.1016/j.optlaseng.2015.03.007 Google Scholar
  7. Enayatifar R, Abdullah AH, Isnin IF, Altameem A, Lee M (2017) Image encryption using a synchronous permutation-diffusion technique. Opt Lasers Eng 90:146–154.  https://doi.org/10.1016/j.optlaseng.2016.10.006 Google Scholar
  8. Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurc Chaos 8(06):1259–1284.  https://doi.org/10.1142/S021812749800098X MathSciNetzbMATHGoogle Scholar
  9. Gong L, Liu X, Zheng F, Zhou N (2013) Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique. J Mod Opt 60(13):1074–1082.  https://doi.org/10.1080/09500340.2013.831139 Google Scholar
  10. Guesmi R, Farah MA, Kachouri A, Samet M (2016) A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn 83(3):1123–1136.  https://doi.org/10.1007/s11071-015-2392-7 MathSciNetzbMATHGoogle Scholar
  11. Khade PN, Narnaware M (2012) 3D chaotic functions for image encryption. IJCSI Int J Comput Sci Issues 9(3):323–328Google Scholar
  12. Khan JS, Rehman AU, Ahmad J, Habib Z (2015a) A new chaos-based secure image encryption scheme using multiple substitution boxes. Information Assurance and Cyber Security (CIACS), pp 16–21.  https://doi.org/10.1109/CIACS.2015.7395561
  13. Khan J, Ahmad J, Hwang SO (2015b). An efficient image encryption scheme based on: Henon map, skew tent map and S-Box. modeling, simulation, and applied optimization (ICMSAO), IEEE, pp 1–6.  https://doi.org/10.1109/ICMSAO.2015.7152261 Google Scholar
  14. Khan FA, Ahmed J, Khan JS, Ahmad J, Khan MA (2017a). A novel image encryption based on Lorenz equation, Gingerbreadman chaotic map and S 8 permutation. J Intell Fuzzy Syst.  https://doi.org/10.3233/JIFS-17656 Google Scholar
  15. Khan JS, Ahmad J, Khan MA (2017b) TD-ERCS map-based confusion and diffusion of autocorrelated data. Nonlinear Dyn 87(1):93–107.  https://doi.org/10.1007/s11071-016-3028-2 MathSciNetGoogle Scholar
  16. Khan JS, Khan MA, Ahmad J, Hwang SO, Ahmed W (2017c) An Improved image encryption scheme based on a non-linear chaotic algorithm and substitution boxes. Informatica 28(4):629–649.  https://doi.org/10.15388/Informatica.2017.149 Google Scholar
  17. Kumar M, Kumar S, Budhiraja R, Das MK, Singh S (2016) Intertwining logistic map and Cellular Automata based color image encryption model. Computational techniques in information and communication technologies (ICCTICT), IEEE, pp 618–623.  https://doi.org/10.1109/ICCTICT.2016.7514653
  18. Liu H, Wang X (2012) Image encryption using DNA complementary rule and chaotic maps. Appl Soft Comput 12(5):1457–1466.  https://doi.org/10.1016/j.asoc.2012.01.016 Google Scholar
  19. Liu L, Zhang Q, Wei X (2012) A RGB image encryption algorithm based on DNA encoding and chaos map. Comput Electr Eng 38(5):1240–1248.  https://doi.org/10.1016/j.compeleceng.2012.02.007 Google Scholar
  20. Masuda N, Jakimoski G, Aihara K, Kocarev L (2006) Chaotic block ciphers: from theory to practical algorithms. IEEE Trans Circuits Syst I Regul Pap 53(6):1341–1352.  https://doi.org/10.1109/TCSI.2006.874182 MathSciNetzbMATHGoogle Scholar
  21. Norouzi B, Mirzakuchaki S (2017) An image encryption algorithm based on DNA sequence operations and cellular neural network. Multimed Tools Appl 76(11):13681–13701.  https://doi.org/10.1007/s11042-016-3769-4 Google Scholar
  22. Rehman AU, Khan JS, Ahmad J, Hwang SO (2016) A new image encryption scheme based on dynamic s-boxes and chaotic maps. 3D Res 7(1):7.  https://doi.org/10.1007/s13319-016-0084-9 Google Scholar
  23. Rhouma R, Belghith S (2008) Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys Lett A 372(38):5973–5978.  https://doi.org/10.1016/j.physleta.2008.07.057 zbMATHGoogle Scholar
  24. Sam IS, Devaraj P, Bhuvaneswaran RS (2012) An intertwining chaotic maps based image encryption scheme. Nonlinear Dyn 69(4):1995–2007.  https://doi.org/10.1007/s11071-012-0402-6 MathSciNetGoogle Scholar
  25. Shannon CE (1949) Communication theory of secrecy systems. Bell Labs Tech J 28(4):656–715.  https://doi.org/10.1002/j.1538-7305.1949.tb00928.x MathSciNetzbMATHGoogle Scholar
  26. Solak E, Çokal C (2011) Algebraic break of image ciphers based on discretized chaotic map lattices. Inf Sci 181(1):227–233.  https://doi.org/10.1016/j.ins.2010.09.009 MathSciNetGoogle Scholar
  27. Solak E, Çokal C, Yildiz OT, BIYIKOĞLU T (2010) Cryptanalysis of Fridrich’s chaotic image encryption. Int J Bifurc Chaos 20(05):1405–1413.  https://doi.org/10.1142/S0218127410026563 MathSciNetzbMATHGoogle Scholar
  28. Suri S, Vijay R (2017). A Bi-objective genetic algorithm optimization of chaos-DNA based hybrid approach. J Intell Syst.  https://doi.org/10.1515/jisys-2017-0069 Google Scholar
  29. Wang X, Xu D (2014) Image encryption using genetic operators and intertwining logistic map. Nonlinear Dyn 78(4):2975–2984.  https://doi.org/10.1007/s11071-014-1639-z MathSciNetGoogle Scholar
  30. Wang XY, Zhang YQ, Bao XM (2015a) A novel chaotic image encryption scheme using DNA sequence operations. Opt Lasers Eng 73:53–61.  https://doi.org/10.1016/j.optlaseng.2015.03.022 Google Scholar
  31. Wang X, Liu L, Zhang Y (2015b) A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt Lasers Eng 66:10–18.  https://doi.org/10.1016/j.optlaseng.2014.08.005 Google Scholar
  32. Wang XY, Zhang HL, Bao XM (2016) Color image encryption scheme using CML and DNA sequence operations. Biosystems 144:18–26.  https://doi.org/10.1016/j.biosystems.2016.03.011 Google Scholar
  33. Wei X, Guo L, Zhang Q, Zhang J, Lian S (2012) A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system. J Syst Softw 85(2):290–299.  https://doi.org/10.1016/j.jss.2011.08.017 Google Scholar
  34. Xiao G, Lu M, Qin L, Lai X (2006) New field of cryptography: DNA cryptography. Chin Sci Bull 51(12):1413–1420.  https://doi.org/10.1007/s11434-006-2012-5 MathSciNetzbMATHGoogle Scholar
  35. Zhang Y (2015) Cryptanalysis of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik-Int J Light Electron Opt 126(2):223–229.  https://doi.org/10.1016/j.ijleo.2014.08.129 Google Scholar
  36. Zhang Y, Fu LHB (2012) Research on DNA cryptography. In: Sen J (ed) Applied cryptography and network security, InTech. ISBN: 978-953-51-0218-2. http://www.intechopen.com/books/applied-cryptography-and-network-security/research-on-dnacryptography
  37. Zhang Q, Guo L, Wei X (2010a) Image encryption using DNA addition combining with chaotic maps. Math Comput Model 52(11–12):2028–2035.  https://doi.org/10.1016/j.mcm.2010.06.005 MathSciNetzbMATHGoogle Scholar
  38. Zhang Q, Wang Q, Wei X (2010b) A novel image encryption scheme based on DNA coding and multi-chaotic maps. Adv Sci Lett 3(4):447–451.  https://doi.org/10.1166/asl.2010.1170 Google Scholar
  39. Zhang Y, Li CL, Zhang D, Shu S (2012) Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn 69(3):1091–1096.  https://doi.org/10.1007/s11071-012-0329-y MathSciNetzbMATHGoogle Scholar
  40. Zhang Q, Guo L, Wei X (2013) A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik-Int J Light Electron Opt 124(18):3596–3600.  https://doi.org/10.1016/j.ijleo.2012.11.018 Google Scholar
  41. Zhang YQ, Wang XY, Liu J, Chi ZL (2016) An image encryption scheme based on the MLNCML system using DNA sequences. Opt Lasers Eng 82:95–103.  https://doi.org/10.1016/j.optlaseng.2016.02.002 Google Scholar
  42. Zheng X, Xu J, Li W (2009) Parallel DNA arithmetic operation based on n-moduli set. Appl Math Comput 212(1):177–184.  https://doi.org/10.1109/TNB.2016.2574359 MathSciNetzbMATHGoogle Scholar
  43. Zhou N, Li H, Wang D, Pan S, Zhou Z (2015) Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt Commun 343:10–21.  https://doi.org/10.1016/j.optcom.2014.12.084 Google Scholar
  44. Zhou N, Pan S, Cheng S, Zhou Z (2016) Image compression–encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt Laser Technol 82:121–133.  https://doi.org/10.1016/j.optlastec.2016.02.018 Google Scholar
  45. Zhou N, Hu Y, Gong L, Li G (2017) Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf Process 16(6):164.  https://doi.org/10.1007/s11128-017-1612-0 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ElectronicsBanasthali VidyapithBanasthaliIndia

Personalised recommendations