Advertisement

Fragile watermarking tamper detection via bilinear fuzzy relation equations

  • Ferdinando Di Martino
  • Salvatore SessaEmail author
Original Research

Abstract

We present a fragile color image watermarking based on the greatest solution of a bilinear fuzzy relation equation. The original image is coded with fuzzy transforms and divided in sub-images of sizes 2 × 2 called blocks. The watermark is applied on these blocks. A pre-processing phase is used to determine the best compression rate for the coding process. We test this scheme in tamper detection analysis on a sample of color images having different sizes. The results show that the proposed algorithm is better than that one obtained by using our previous method. Furthermore comparisons with various block-based fragile watermarking methods are made in our tests.

Keywords

Fragile watermarking Block-wise Scheme Bilinear fuzzy relation equation Fuzzy transform Tamper detection Tamper localization 

Notes

Acknowledgements

This paper was performed under the auspices of INDAM-GCNS.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Al-Otum HA, Al-Taba’a AO (2009) Adaptive color image watermarking based on a modified improved pixel-wise masking technique. Comput Electr Engin 5:673–695.  https://doi.org/10.1016/j.compeleceng.2009.01.007 CrossRefzbMATHGoogle Scholar
  2. Ansari IA, Pant M, Ahn CW (2016) SVD based fragile watermarking scheme for tamper localization and self-recovery. J Mach Learn Cyber 7:1225–1239.  https://doi.org/10.1007/s1304201504551 CrossRefGoogle Scholar
  3. Barni M (2002) Improved wavelet-based watermarking through pixel-wise making. IEEE Trans Image Process 10(5):783–791.  https://doi.org/10.1109/83.918570 CrossRefzbMATHGoogle Scholar
  4. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, ISBN:0306406713CrossRefzbMATHGoogle Scholar
  5. Celik MU, Sharma G, Saber E, Tekalp AM (2002) Hierarchical watermarking for secure image authentication with localization. IEEE Trans Image Process 11(6):585–595.  https://doi.org/10.1109/TIP.2002.1014990 CrossRefGoogle Scholar
  6. Chang YF, Tai WL (2013) A block-based watermarking scheme for image tamper detection and self-recovery. OPTO Electron Rev 21(2):182–190.  https://doi.org/10.2478/s1177201300884 MathSciNetCrossRefGoogle Scholar
  7. Chang CC, Hu YS, Lu TC (2006) A watermarking-based image ownership and tampering authentication scheme. Pattern Recogn Lett 27(5):439–446.  https://doi.org/10.1016/J.PATREC.2005.09.006 CrossRefGoogle Scholar
  8. Chen WC, Wang MS (2009) A fuzzy C-means clustering-based fragile watermarking scheme for image authentication. Expert Syst Appl 36:1300–1307.  https://doi.org/10.1016/j.eswa.2007.11.018 CrossRefGoogle Scholar
  9. Cox IJ, Miller M, Bloom J, Fridrich J, Kalker T (2008) Digital watermarking and stenography. Morgan Kaufmann, San Francisco, ISBN: 9780123725851Google Scholar
  10. Di Martino F, Sessa S (2006) Digital watermarking in coding/decoding processes with fuzzy relation equations. Soft Comput 10:238–243.  https://doi.org/10.1007/s0050000504779 CrossRefGoogle Scholar
  11. Di Martino F, Sessa S (2012a) Digital watermarking strings with images compressed by fuzzy relation equations. In: Chatterjee PA (eds) Computational intelligence in image processing siarry. Springer, Berlin, pp 173–186.  https://doi.org/10.1007/97836423062116 Google Scholar
  12. Di Martino F, Sessa S (2012b) Fragile watermarking tamper detection with images compressed by fuzzy transform. Inf Sci 195:62–90.  https://doi.org/10.1016/j.ins.2012.01.014 CrossRefGoogle Scholar
  13. Di Martino F, Sessa S (2017) Comparison between images via bilinear fuzzy relation equations. J Ambient Intell Humaniz Comput.  https://doi.org/10.1007/s1265201705763 Google Scholar
  14. Hirota K, Pedrycz W (2002) Data compression with fuzzy relational equations. Fuzzy Sets Syst 126(3):325–335.  https://doi.org/10.1016/S01650114(01)000094 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Holliman M, Memon N (2000) Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes. IEEE Trans Image Process 9(3):432–441.  https://doi.org/10.1109/83.826780 CrossRefGoogle Scholar
  16. Li JX (1992) A new algorithm for the greatest solution of fuzzy bilinear equation. Fuzzy Sets Syst 46:193–210.  https://doi.org/10.1016/0165-0114(92)90132-N MathSciNetCrossRefzbMATHGoogle Scholar
  17. Li CT (2004) Digital fragile watermarking scheme for authentication of JPEG images. IEE Proc Vision Image Signal Process 151(6):460–466.  https://doi.org/10.1049/ip-vis:20040812 CrossRefGoogle Scholar
  18. Li CT, Yuan Y (2006) Digital watermarking scheme exploiting non deterministic dependence for image authentication. Opt Eng 45(12):127001.  https://doi.org/10.1117/1.2402932 CrossRefGoogle Scholar
  19. Li X, Zhang H, Chen M (2012) Self-recovery fragile watermarking based on superior block-wise tamper detection. In:Proceedings of 11th IEEE International Conference on Signal Processing, Beijng, pp. 1697–1700.  https://doi.org/10.1109/ICoSP.2012.6491907
  20. MeenakshiDevi P, Venkatesan M, Duraiswamy K (2009) Fragile watermarking scheme for image authentication with tamper localization using integer wavelet transform. J Comput Sci 5(11):831–837.  https://doi.org/10.3844/jcssp.2009.831.837 CrossRefGoogle Scholar
  21. Ni R, Zhao Y, Yang L, Qiao X (2013) Irregular region-wise watermarking scheme for image tampering detection and recovery. Res Notes Inform Sci 14:471–476.  https://doi.org/10.4156/rnis.vol14.84 Google Scholar
  22. Nobuhara H, Pedrycz W, Hirota K (2002) A digital watermarking algorithm using image compression method based on fuzzy relational equations. In: Proceedings of FUZZ-IEEE 2002, Vol. 2, IEEE Press, pp. 1568–1573.  https://doi.org/10.1109/FUZZ.2002.1006740
  23. Perfilieva I (2006) Fuzzy transforms. Fuzzy Sets Syst 157 (8): 993 – 1023.  https://doi.org/10.1016/j.fss.2005.11.012
  24. Qin C, Ji P, Zhang X, Dong J, Wang J (2017) Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Sig Process 138:280–293.  https://doi.org/10.1016/j.sigpro.2017.03.033 CrossRefGoogle Scholar
  25. Shih FY (2007) Digital watermarking and steganography: fundamentals and techniques. CRC Press (Taylor & Francis Group). Abingdon. ISBN: 9781420047578Google Scholar
  26. Singh D, Singh SK (2017) DCT based efficient fragile watermarking scheme for image authentication and restoration. Multimedia Tools Appl 76:953–977.  https://doi.org/10.1007/s110420153010x CrossRefGoogle Scholar
  27. Suthaharan S (2004) Fragile image watermarking using a gradient image for improved localization and security. Pattern Recogn Lett 25(16):1893–1903.  https://doi.org/10.1016/j.patrec.2004.08.017 CrossRefGoogle Scholar
  28. Tong X, Liu Y, Zhang M, Chen Y (2013) A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Process Image Comm 28:301–308.  https://doi.org/10.1016/j.image.2012.12.003 CrossRefGoogle Scholar
  29. Walton S (1995) Information authentification for a slippery new age. Dr Dobbs J 20(4):18–26Google Scholar
  30. Wolfgang RB, Podilciuk CI, Delp EJ (1998) The effect of the matching watermark and compression transforms in compressed color images. In: Proceedings IEEE International conference in image processing (ICIP1), Chicago, pp. 440–444.  https://doi.org/10.1109/ICIP.1998.723519

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di ArchitetturaUniversità degli Studi di Napoli Federico IINapoliItaly
  2. 2.Centro Interdipartimentale di Ricerca “A. Calza Bini”Università degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations