Natural language interface model for the evaluation of ergonomic routines in occupational health (ILENA)

  • Carlos Julio Moya Jutinico
  • Carlos Enrique Montenegro-Marin
  • Daniel Burgos
  • Ruben González CrespoEmail author
Original Research


This article presents research done on a joint assessment model, including physiotherapy and computer and vector concepts, to achieve a natural language interface prototype creation that captures occupational health movements by performing an upper extremities rating in workers in computing.


Kinect Joint Occupational health Vector ILENA 


  1. Achcar JA, Rodrigues J (2000) Introdução à estatstica para ciências e tecnologia. ICMC/USPGoogle Scholar
  2. Alonso-Virgos L, Espada P, Rodríguez J, Baena L, Crespo RG (2017) Design specific user interfaces for people with down syndrome using suitable WCAG 2.0 guidelines. J Ambient Intell Humaniz Comput. Google Scholar
  3. Altman P (2013) Using MS Kinect device for natural user interface. Master’s Thesis, University of West BohemiaGoogle Scholar
  4. Barreiro M, Frere A, Theodorio N, Amate F (2003) Goniometer based to computer. In Engineering in Medicine and Biology Society, 2003. In: Proceedings of the 25th annual international conference of the IEEE, vol 4, pp 3290–3293, Cancun, Mexico. IEEE.
  5. Benhumea SHP (2012) Interfaz de lenguaje natural usando kinect. Master’s Thesis, Unidad Zacatenco Departamento de Computación, México, Distrito FederalGoogle Scholar
  6. Bolanos S, Gonzalez Crespo R, Espada G, García-Díaz V, Osis J (2016) Softwareland chronicles: a software development meta-process proposal. Appl Comput Syst 19(1):5–14. CrossRefGoogle Scholar
  7. Bolanos-Castro JS, Gonzalez Crespo R, Medina-Garcia HV (2011) Patterns of software development process. Int J Interact Multimed Artif Intell 1:33–40. Google Scholar
  8. Cover T, Hart P (2006) Nearest neighbor pattern classification. IEEE Trans Inf Theor 13(1):21–27. CrossRefzbMATHGoogle Scholar
  9. De Castilla y Leon JA, Obreras de Castilla y Leon C (2008) Manual de trastornos musculoesqueléticos. Secretaria de Salud Laboral CC.OO. Castilla y LeónGoogle Scholar
  10. De la Salud OM (2017) Índice de masa corporal. Accessed 1 Sept 2017
  11. For Disease Control C and Prevention (2017) Normal joint range of motion study. Centers for Disease Control and Prevention. Accessed 10 Nov 2017
  12. Gallo L, Placitelli A, Ciampi M (2011) Controller-free exploration of medical image data: experiencing the kinect. In: Computer-based medical systems (CBMS), 2011 24th international symposium on, pp 1–6.
  13. Magdin M, Prikler F (2018) Real time facial expression recognition using webcam and sdk affectiva. Int J Interact Multimed Artif Intell. Google Scholar
  14. Microsoft (2013) Kinect for windows human interface guidelines v1.8.0. Microsoft Developer NetworkGoogle Scholar
  15. Microsoft (2015) Kinect for windows. Microsoft Developer NetworkGoogle Scholar
  16. Moore SJ, Garg A (1995) The Strain Index: a proposed method to analyze jobs for risk of distal upper extremity disorders. Am Ind Hyg Assoc J 56:443–458. CrossRefGoogle Scholar
  17. Ojeda LR (2007) Probabilidad y estadística básica para ingenieros. Escuela superior politécnica del litoralGoogle Scholar
  18. Ortiz A, Gutierrez J, Barraza F, Delgado R, Nunez M, Aguirre H (2011) Design of a sensor for measuring range of motion of the hand. Health Care Exchanges (PAHCE), 2011 Pan American, pp 29–32.
  19. Parashar A, Parashar A, Goyal S (2016) Push recovery for humanoid robot in dynamic environment and classifying the data using k-mean. Int J Interact Multimed Artif Intell 4(2):29–34. Google Scholar
  20. Ross W (1985) The phantom stratagem for proportional growth assessment: questions and answers. Hum Biol 16:156–167Google Scholar
  21. Silverman BW, Jones MC, Fix E, Hodges JL (1989) E. Fix and J. L. Hodges (1951): an important contribution to nonparametric discriminant analysis and density estimation: commentary on Fix and Hodges (1951). Int Stat Rev 57(3):233–238CrossRefzbMATHGoogle Scholar
  22. Stanley D (2013) Measuring attention using Microsoft Kinect. Master’s Thesis, Rochester Institute of TechnologyGoogle Scholar
  23. Stevens P, Pooley P, Fernández-Alarcón M, González-Crespo R (2007) Utilización de UML en ingeniería del software con objetos y componentes. Pearson Addison Wesley, BostonGoogle Scholar
  24. Systems C (2014) Cyber glove II. Accessed 30 Aug 2017
  25. Taboadela C (2007) Goniometría: una herramienta para la evaluación de las incapacidades laborales. ASOCIART SA ART ©Google Scholar
  26. Verdú E, Bustelo CPG, Sánchez MÁM, Crespo RG (2017) A system to generate signwriting for video tracks enhancing accessibility of deaf people. Int J Interact Multimed Artif Intell 4(6):109–115. Google Scholar
  27. Wang J, Liu Z, Wu Y, Yuan J (2012) Mining action let ensemble for action recognition with depth cameras. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, pp 1290–1297.
  28. Weinberger KQ, Blitzer J, Saul LK (2006) Distance metric learning for large margin nearest neighbor classification. Adv Neural Inf Process Syst 18:1473–1480. Google Scholar
  29. Xiao Y, Yuan J, Thalmann D (2013) Human-virtual human interaction by upper body gesture understanding. In: VRST’13 proceedings of the 19th ACM symposium on virtual reality software and technology, pp 133–142. ACM.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Julio Moya Jutinico
    • 1
  • Carlos Enrique Montenegro-Marin
    • 1
  • Daniel Burgos
    • 2
  • Ruben González Crespo
    • 2
    Email author
  1. 1.Universidad Distrital Francisco Jose de CaldasBogotáColombia
  2. 2.Universidad Internacional de La Rioja (UNIR)LogroñoSpain

Personalised recommendations