Advertisement

Numerical modeling of electromagnetic wave logging while drilling in deviated well

  • Aiping Wu
  • Qingqing FuEmail author
  • Saleh Muhamed Mwachaka
  • Xiaoying He
Original Research

Abstract

Electromagnetic wave logging-while-drilling (LWD) tools are used in geosteering for hydrocarbon exploration. Comparing with vertical wells, the response of logging has widely changed because the electrical parameters surrounding the borehole are nonaxisymmetrical distribution in deviated well. In this paper, with the method of alternating-direction-implicit finite-difference time-domain (ADI-FDTD), we discuss the logging response of electromagnetic wave LWD in deviated well, three-dimensional Yee’s non-uniform staggered grid is used in cylindrical coordinates, transfer coordinate system is built between strata space and instrument space, which the conductivity tensor of the anisotropic and dipping formation can be expressed in coordinates of instrument, the method of area weighted average is used to compute the effective conductivity of partially-filled grid cells at interfaces, and uniaxial perfectly matched layer (UPML) absorbing boundary conditions is used to truncate the computational domain. Result shows that horn of logging response curve is appeared on both upper and lower boundaries, when electromagnetic wave LWD tool penetrating through the boundary with large dipping angle, and this horn is used to indicate the presence of formation boundaries. What’s more, with the eccentric distance increases, horns effect of the boundary is more obvious.

Keywords

Electromagnetic wave Logging while drilling (LWD) Finite-difference time-domain (FDTD) Well logging 

Notes

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable and constructive suggestions that improved this paper. This work was partly supported by the National Natural Science Foundation of China (No. 51541408) and the Education Department of Hubei Province, China (D20141303).

References

  1. Ala G, Francomano E, Ganci S (2015) Unconditionally stable meshless integration of time-domain maxwell’s curl equations. Appl Math Comput 255(3):157–164.  https://doi.org/10.1016/j.amc.2014.05.127 MathSciNetzbMATHGoogle Scholar
  2. Bakr SA, Pardo D, Torres-Verdín C (2017) Fast inversion of logging-while-drilling resistivity measurements acquired in multiple wells. Geophysics 82(3):E111-E120.  https://doi.org/10.1190/geo2016-0292.1 CrossRefGoogle Scholar
  3. Bittar MS (2002). Electromagnetic wave resistivity tool having a tilted antenna for geosteering within a desired payzone. US Patent No. 6,476,609Google Scholar
  4. Chen JF, Wang J, Yu Y (2016) An improved complex image theory for fast resistivity modeling and its application to geosteering. SPE J 21(4):1450–1457.  https://doi.org/10.2118/170661-PA CrossRefGoogle Scholar
  5. Fan GX, Liu QH, Blanchard SP (2000) 3-d numerical mode-matching (nmm) method for resistivity well-logging tools. Antennas Propag IEEE Trans on 48(10):1544–1552.  https://doi.org/10.1109/8.899671 CrossRefGoogle Scholar
  6. Galsa A, Herein M, Drahos D, Herein A (2016) Effect of the eccentricity of normal resistivity borehole tools on the current field and resistivity measurement. J Appl Geophys 134:281–290.  https://doi.org/10.1016/j.jappgeo.2016.09.001 CrossRefGoogle Scholar
  7. Garcia SG, Lee TW, Hagness SC (2002) On the accuracy of the adi-fdtd method. Antennas Wirel Propag Lett IEEE 1(1):31–34.  https://doi.org/10.1109/LAWP.2002.802583 CrossRefGoogle Scholar
  8. Gorbatenko AA, Sukhorukova KV (2016) High-frequency induction logging in deviated and horizontal wells: geosteering and inversion. Russ Geol Geophys 57(7):1111–1117.  https://doi.org/10.1016/j.rgg.2016.06.010 CrossRefGoogle Scholar
  9. Hong D, Huang WF, Chen H, Liu QH (2017) Novel and stable formulations for the response of horizontal-coil eccentric antennas in a cylindrically multilayered medium. IEEE Trans Antennas Propag 65(4):1967–1977.  https://doi.org/10.1109/TAP.2017.2670360 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Hou J, Bittar MS, Hu G (2006) 3D simulation of lwd directional resistivity tool response using fdfd potential formulations. SEG Techn Progr Expand Abstr 25(1):3541.  https://doi.org/10.1190/1.2370284 Google Scholar
  11. Lee HO, Teixeira FL (2007) Cylindrical fdtd analysis of lwd tools through anisotropic dipping-layered earth media. IEEE Trans Geosci Remote Sens 45(2):383–388.  https://doi.org/10.1109/TGRS.2006.888139 CrossRefGoogle Scholar
  12. Lee HO, Teixeira FL, Martin LES, Bittar MS (2012) Numerical modeling of eccentered lwd borehole sensors in dipping and fully anisotropic earth formations. IEEE Trans Geosci Remote Sens 50(3):727–735.  https://doi.org/10.1109/TGRS.2011.2162736 CrossRefGoogle Scholar
  13. Nam MJ, Pardo D, Torresverdín C (2013) Simulation of borehole-eccentered triaxial induction measurements using a fourierhpfinite-element method. Geophysics 78(1):D41-D52.  https://doi.org/10.1190/geo2011-0524.1 CrossRefGoogle Scholar
  14. Qin Z, Pan H, Wu A, Yang H, Hu T, Hou M et al. (2017). Application of conventional propagation resistivity logging for formation boundary identification in geosteering. J Geophys Eng, 14(5). https://doi.org/10.1088/1742-2140/aa80a0
  15. Redman JD, Hans G, Diamanti N (2016) Impact of wood sample shape and size on moisture content measurement using a gpr-based sensor. IEEE J Sel Topics Appl Earth Obs Remote Sens 9(1):221–227.  https://doi.org/10.1109/JSTARS.2016.2517601 CrossRefGoogle Scholar
  16. Salazar JM, Torres-Verdín C (2009) Quantitative comparison of processes of oil- and water-based mud-filtrate invasion and corresponding effects on borehole resistivity measurements. Geophysics 74(1):E57.  https://doi.org/10.1190/1.3033214 CrossRefGoogle Scholar
  17. Salazar J, Torres-Verdin C, Wang GL (2011) Effects of surfactant-emulsified oil-based mud on borehole resistivity measurements. SPE J 16(3):608–624.  https://doi.org/10.2118/109946-PA CrossRefGoogle Scholar
  18. Shao J, Yan Z, Han S, Li H, Gao T, Hu X et al (2017) Differential signal extraction for continuous wave mud pulse telemetry. J Pet Sci Eng 148:127–130.  https://doi.org/10.1016/j.petrol.2016.09.047 CrossRefGoogle Scholar
  19. Sun J, Gao J, Jiang Y, Cui L (2016) Resistivity and relative permittivity imaging for oil-based mud: a method and numerical simulation. J Pet Sci Eng 147:24–33.  https://doi.org/10.1016/j.petrol.2016.04.042 CrossRefGoogle Scholar
  20. Taflove A, Brodwin ME (1975) Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwell’s equations. IEEE Trans Microw Theory Tech 23(8):623–630.  https://doi.org/10.1109/TMTT.1975.1128640 CrossRefGoogle Scholar
  21. Wang H, Fehler M, Miller D (2017) Reliability of velocity measurements made by monopole acoustic logging-while-drilling tools in fast formations. Geophysics 82(4):1–30.  https://doi.org/10.1190/geo2016-0387.1 CrossRefGoogle Scholar
  22. Weiss CJ, Newman GA (2002) Electromagnetic induction in a fully 3-d anisotropic earth. Geophysics 67(4):1104–1114.  https://doi.org/10.1190/1.1500371 CrossRefGoogle Scholar
  23. Wu D, Chen J, Liu CR (2008) An efficient fdtd method for axially symmetric lwd environments. IEEE Trans Geosci Remote Sens 46(6):1652–1656.  https://doi.org/10.1109/TGRS.2008.916202 CrossRefGoogle Scholar
  24. Yang Y, Xiong N, Vasilakos AV, Xue J, Wang G, Zhou L (2010) A reliable quick parasitic capacitance extraction tool for the physical layer in communication systems. J Ambient Intell Humaniz Comput 1(2):75–83.  https://doi.org/10.1007/s12652-009-0002-6 CrossRefGoogle Scholar
  25. Yang Z, Yang J, Han L (2013) A real-time borehole correction of electromagnetic wave resistivity logging while drilling. Pet Explor Dev 40(5):671–675.  https://doi.org/10.1016/S1876-3804(13)60090-7 CrossRefGoogle Scholar
  26. Yee K (1966) Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307.  https://doi.org/10.1109/TAP.1966.1138693 CrossRefzbMATHGoogle Scholar
  27. Zhou F, Hu XY, Meng QX, Hu XD, Liu ZY (2015) Model and method of permeability evaluation based on mud invasion effects. Appl Geophys 12(4):482–492.  https://doi.org/10.1007/s11770-015-0516-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics and InformationYangtze UniversityJingzhouChina
  2. 2.National Demonstration Center for Experimental Electrical and Electronical EducationYangtze UniversityJingzhouChina
  3. 3.Faculty of Computing, Information Systems and MathematicsInstitute of Finance ManagementDar es SalaamTanzania

Personalised recommendations