An indoor gas leakage source localization algorithm using distributed maximum likelihood estimation in sensor networks

  • Zhang Yong
  • Zhang LiyiEmail author
  • Han Jianfeng
  • Ban Zhe
  • Yang Yi
Original Research


Gas leakage source localization based on sensor networks has an important practical significance in many fields such as environmental monitoring, security protection and pollution control. This paper proposed a gas leakage source localization algorithm using distributed maximum likelihood estimation method for mobile sensor network to improve the lower performance with static sensor network. Firstly, the likelihood function of gas leakage source parameters was deduced based on the gas turbulent diffusion model. Then, the parameters of gas leakage source were estimated based on the likelihood function with the gas concentration measurement in environment. Finally, the gas leakage source location would be achieved through the iterative optimization of the likelihood function. The preliminary experimental results show that the proposed distributed Maximum Likelihood Estimation method could be achieved an acutely gas leakage source location in an indoor environment. And the reasonable path planning and dynamic topology changing could improve the positioning performance.


Sensor networks Gas source localization Maximum likelihood estimation 



The authors wish to thank for the financial support of Natural Science Foundation of China (61573253, 61271321), Tianjin Natural Science Foundation (16JCYBJC16400), Tianjin Science and Technology Project (16YFZCGX00360,16ZXZNGX00080), Tianjin Science and Technology Project of Special Correspondent (17JCTPJC), National Training Programs of Innovation and Entrepreneurship for Undergraduates (201610069007, 201710069023). The corresponding author is Professor Zhang Liyi.


  1. Chraim F, Erol YB, Pister K (2016) Wireless gas leak detection and localization. IEEE Trans Ind Inf 12(2):768–779CrossRefGoogle Scholar
  2. Feng S, Wu C, Zhang Y et al (2014) Grid-based improved maximum likelihood estimation for dynamic localization of mobile robots. Int J Distrib Sens Netw 10(3):271547CrossRefGoogle Scholar
  3. Hosseini B, Stockie JM (2016a) Airborne contaminant source estimation using a finite-volume forward solver coupled with a Bayesian inversion approachGoogle Scholar
  4. Hosseini B, Stockie JM (2016b) Bayesian estimation of airborne fugitive emissions using a Gaussian plume model. Atmos Environ 141:122–138CrossRefGoogle Scholar
  5. Hutchinson M, Oh H, Chen WH (2017) A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inf Fusion 36:130–148CrossRefGoogle Scholar
  6. Keats A, Yee E, Lien FS (2007) Bayesian inference for source determination with applications to a complex urban environment. Atmos Environ 41(3):465–479CrossRefGoogle Scholar
  7. Keats A, Yee E, Lien FS (2010) Information-driven receptor placement for contaminant source determination. Environ Model Softw 25(9):1000–1013CrossRefGoogle Scholar
  8. Kuang X, Shao H (2006) Application of sensor networks in plume source position estimation. J East China Univ Sci Technol (Natural Science Edition) 32(7):780–783Google Scholar
  9. Li JG, Meng QH, Wang Y et al (2011) Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Auton Robots 30(3):281–292CrossRefGoogle Scholar
  10. Li H, Yang Y, Qiu X et al (2017) Gravitation-based 3-D redeployment schemes for the mobile sensors and sink in gas leakage monitoring. IEEE Access 5:8545–8558CrossRefGoogle Scholar
  11. Michaelides MP, Panayiotou CG (2009) Fault tolerant maximum likelihood event localization in sensor networks using binary data. IEEE Signal Process Lett 16(5):406–409CrossRefzbMATHGoogle Scholar
  12. Michalis PM, Christos GP (2005) Plume source position estimation using sensor network. In: Proceedings of the 13th Mediterranean conference on control and automation, pp 731–736Google Scholar
  13. Mitra S, Duttagupta SP, Tuckley DK et al (2012) 3D ad-hoc sensor networks based localization and risk assessment of buried landfill gas source. Int J Circ Syst Signal Process 6(1):75–86Google Scholar
  14. Özkan E, Lindsten F, Fritsche C et al (2015) Recursive maximum likelihood identification of jump Markov nonlinear systems. IEEE Trans Signal Process 63(3):754–765MathSciNetCrossRefzbMATHGoogle Scholar
  15. Ristic B, Morelande MR, Gunatilaka A (2010) Information driven search for point sources of gamma radiation. Sig Process 90(4):1225–1239CrossRefzbMATHGoogle Scholar
  16. Ruhi H, Charles J, Ray L et al (2012) Atmospheric tomography: a Bayesian inversion technique for determining the rate and location of fugitive emissions. Environ Sci Technol 46(3):1739–1746CrossRefGoogle Scholar
  17. Senocak I, Hengartner NW, Short MB et al (2008) Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference. Atmos Environ 42(33):7718–7727CrossRefGoogle Scholar
  18. Shu L, Mukherjee M, Xu X et al (2016) A survey on gas leakage source detection and boundary tracking with wireless sensor networks. IEEE Access 4:1700–1715CrossRefGoogle Scholar
  19. Simonetto A, Leus G (2014) Distributed maximum likelihood sensor network localization. IEEE Trans Signal Processing 62(6):1424–1437MathSciNetCrossRefzbMATHGoogle Scholar
  20. Ushiku H, Ishida H et al (2006) Estimation of gas-source location using gas sensors and ultrasonic anemometer. In: The proceedings of IEEE sensors, pp 420–423Google Scholar
  21. Vankayalapati N, Kay S, Ding Q (2014) TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao bound. IEEE Trans Aerosp Electron Syst 50(3):1616–1635CrossRefGoogle Scholar
  22. Vijayakumaran S, Levinbook Y, Wong TF (2007) Maximum likelihood localization of a diffusive point source using binary observations. IEEE Trans Signal Process 55(2):665–676MathSciNetCrossRefzbMATHGoogle Scholar
  23. Wade D, Senocak I (2013) “Stochastic reconstruction of multiple source atmospheric contaminant dispersion events”. Atmos Environ 74(74):45–51CrossRefGoogle Scholar
  24. Wang Y, Huang H, Huang L et al (2017) Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: a comparison of likelihood functions and distance measures. Atmos Environ 152:519–530CrossRefGoogle Scholar
  25. Weimer J, Bruce HK, Mitchel J et al (2012) An approach to leak detection using wireless sensor networks at carbon sequestration sites. Int J Greenhouse Gas Control 9(7):243–253CrossRefGoogle Scholar
  26. Wu MW, Qinghao ZM (2015) Gas source localization based on mobile sensor network. J Tianjin Univ 2:139–146Google Scholar
  27. Xu J, He J, Zhang Y et al (2016) A distance-based maximum likelihood estimation method for sensor localization in wireless sensor networks. Int J Distrib Sens Netw 12(4):2080536CrossRefGoogle Scholar
  28. Zhao T, Nehorai A (2007) Distributed sequential Bayesian estimation of a diffusive source in wireless sensor networks. IEEE Trans Signal Process 55(4):2213–2225MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Zhang Yong
    • 1
  • Zhang Liyi
    • 1
    Email author
  • Han Jianfeng
    • 1
  • Ban Zhe
    • 1
  • Yang Yi
    • 1
  1. 1.The College of InformationTianjin University of CommerceTianjinChina

Personalised recommendations