Advertisement

Temporal-correlation-based compressive channel estimation for universal filtered multicarrier system over fast-fading channels

  • Rong WangEmail author
  • Jingye Cai
  • Xiang Yu
  • Jianchun Jiang
Original Research

Abstract

The universal filtered multicarrier technique is a competitive candidate multicarrier modulation scheme for 5G communication systems. Conventional channel-estimation algorithms suffer from significant performance losses due to the large spread in the delay of multipath channels in high-speed scenarios. To address this problem, we here propose a low-complexity, partial priori information-sparsity adaptive matching pursuit (PPI-SAMP) algorithm. Unlike the conventional SAMP algorithm, the PPI-SAMP algorithm improves performance over fast-fading channels by adequately exploiting the sparse characteristics and temporal correlation of wireless channels. First, the PPI-SAMP algorithm averages the channel impulse responses (CIRs) of consecutive symbols over the coherence time for achieving the accuracy required for coarse channel estimation. Second, the improved SAMP algorithm acquires the accurate CIRs with low complexity based on the coarse CIR. Moreover, the MSE performance and recovery probability with varying sizes of IBI-free region indicate that the proposed PPI-SAMP algorithm offers a longer CIR for multipath interference and is more robust against larger multipath-channel delay than the conventional SAMP and CoSaMP algorithms. The proposed algorithm also estimates channels more accurately than conventional SAMP and CoSaMP algorithms despite having a complexity reduced by approximately 52% compared to conventional SAMP algorithm.

Keywords

Channel estimation Compression algorithms Time-varying channels 5G mobile communication 

Notes

Acknowledgements

This research was supported in part by the National Science and Technology Specific Program of China (2016ZX03002019-007).

References

  1. Andrews JG, Buzzi S, Choi W et al (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082. doi: 10.1109/JSAC.2014.2328098 CrossRefGoogle Scholar
  2. Bajwa WU, Haupt J, Sayeed AM, Nowak R (2010) Compressed channel sensing: a new approach to estimating sparse multipath channels. Proc IEEE 98(6):1058–1076. doi: 10.1109/JPROC.2010.2042415 CrossRefGoogle Scholar
  3. Berger CR, Wang Z, Huang J, Zhou S (2010) Application of compressive sensing to sparse channel estimation. IEEE Commun Mag 48(11):164–174. doi: 10.1109/MCOM.2010.5621984 CrossRefGoogle Scholar
  4. Boccardi F, Heath RW, Lozano A et al (2014) Five disruptive technology directions for 5G. IEEE Commun Mag 52(2):74–80. doi: 10.1109/MCOM.2014.6736746 CrossRefGoogle Scholar
  5. Borade S, Zheng L (2012) Writing on fading paper, dirty tape with little ink: wideband limits for causal transmitter CSI. IEEE Trans Inf Theory 58(8):5388–5397. doi: 10.1109/TIT.2012.2201330 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509. doi: 10.1109/TIT.2005.862083 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Dai L, Wang Z, Yang Z (2012) Next-generation digital television terrestrial broadcasting systems: key technologies and research trends. IEEE Commun Mag 50(6):150–158. doi: 10.1109/MCOM.2012.6211500 CrossRefGoogle Scholar
  8. Ding W, Yang F, Pan C, Dai L, Song J (2014) Compressive sensing based channel estimation for OFDM systems under long delay channels. IEEE Trans Broadcast 60(2):313–321. doi: 10.1109/TBC.2014.2315913 CrossRefGoogle Scholar
  9. Ding W, Yang F, Dai W, Song J (2015a) Time–frequency joint sparse channel estimation for MIMO-OFDM systems. IEEE communications letters 19(1):58–61. doi: 10.1109/LCOMM.2014.2372006 CrossRefGoogle Scholar
  10. Ding W, Yang F, Liu S, Song J (2015b) Approach to suppress out-of-band emission for dual pseudo noise padded time-domain synchronous-orthogonal frequency division multiplexing systems. IET Commun 9(13):1606–1614. doi: 10.1049/iet-com.2014.1251 CrossRefGoogle Scholar
  11. Ding W, Yang F, Liu S, Wang X, Song J (2016a) Nonorthogonal time–frequency training-sequence-based CSI acquisition for MIMO systems. IEEE Trans Veh Technol 65(7):5714–5719. doi: 10.1109/TVT.2015.2463716 CrossRefGoogle Scholar
  12. Ding W, Yang F, Liu S, Song J (2016b) Structured compressive sensing-based non-orthogonal time-domain training channel state information acquisition for multiple input multiple output systems. IET Commun 10(6):685–690. doi: 10.1049/iet-com.2015.0697 CrossRefGoogle Scholar
  13. Do TT, Gan L, Nguyen N, Tran TD (2008) Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: 42nd Asilomar conference on signals, systems and computers, IEEE, pp 581–587. doi: 10.1109/ACSSC.2008.5074472
  14. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306. doi: 10.1109/TIT.2006.871582 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Gao Z, Dai L, Shen W, Wang Z (2015) Temporal correlation based sparse channel estimation for TDS-OFDM in high-speed scenarios. In: Military communications conference, MILCOM 2015–2015 IEEE, pp 798–803. doi: 10.1109/MILCOM.2015.7357542
  16. Gui G, Peng W, Adachi F (2014) High-resolution compressive channel estimation for broadband wireless communication systems. Int J Commun Syst 27(10):2396–2407. doi: 10.1002/dac.2483 CrossRefGoogle Scholar
  17. Lee D (2016) MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Commun Lett 20(10):2115–2118. doi: 10.1109/LCOMM.2016.2594059 CrossRefGoogle Scholar
  18. Ma X, Yang F, Ding W, Song J (2016) Novel approach to design time-domain training sequence for accurate sparse channel estimation. IEEE Trans Broadcast 62(3):512–520. doi: 10.1109/TBC.2016.2550760 CrossRefGoogle Scholar
  19. Ma X, Yang F, Liu S, Ding W, Song J (2017) Structured compressive sensing-based channel estimation for time frequency training OFDM systems over doubly selective channel. IEEE Wirel Commun Lett 6(2):266–269. doi: 10.1109/LWC.2017.2669974 CrossRefGoogle Scholar
  20. Mukherjee M, Shu L, Kumar V, Kumar P, Matam R (2015) Reduced out-of-band radiation-based filter optimization for UFMC systems in 5G. In: Wireless communications and mobile computing conference (IWCMC), 2015 international, IEEE, pp 1150–1155. doi: 10.1109/IWCMC.2015.7289245
  21. Nadal J, Nour CA, Baghdadi A (2016) Low-complexity pipelined architecture for FBMC/OQAM transmitter. IEEE Trans Circuits Syst Express Briefs 63(1):19–23. doi: 10.1109/TCSII.2015.2468926 CrossRefGoogle Scholar
  22. Qin Q, Gui L, Gong B, Ren X, Chen W (2016) Structured distributed compressive channel estimation over doubly selective channels. IEEE Trans Broadcast 62(3):521–531. doi: 10.1109/TBC.2016.2550761 CrossRefGoogle Scholar
  23. Schaich F, Wild T, Chen Y (2014) Waveform contenders for 5G-suitability for short packet and low latency transmissions. In: Vehicular technology conference (VTC Spring), 2014 IEEE 79th, pp 1–5. doi: 10.1109/VTCSpring.2014.7023145
  24. Schellmann M, Zhao Z, Lin H (2014) FBMC-based air interface for 5G mobile: challenges and proposed solutions. In: Cognitive radio oriented wireless networks and communications (CROWNCOM), 2014 9th International Conference, IEEE, pp 102–107. doi: 10.4108/icst.crowncom.2014.255708
  25. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666. doi: 10.1109/TIT.2007.909108 MathSciNetCrossRefzbMATHGoogle Scholar
  26. Tropp J, Needell D, Vershynin R (2008) Iterative signal recovery from incomplete and inaccurate measurements. In: Proc. information theory and applications workshop. doi: 10.1016/j.acha.2008.07.002
  27. Wan F, Zhu WP, Swamy MNS (2010) Semi-blind most significant tap detection for sparse channel estimation of OFDM systems. IEEE Trans Circuits Syst Regul Pap 57(3):703–713. doi: 10.1109/TCSI.2009.2023765 MathSciNetCrossRefGoogle Scholar
  28. Wang R, Cai J, Yu X (2017) Compressive channel estimation for a UFMC system in high-speed scenarios. IET Commun. doi: 10.1049/iet-com.2017.0308 Google Scholar
  29. Yu F, Li D, Guo Q, Wang Z, Xiang W (2015) Block-FFT based OMP for compressed channel estimation in underwater acoustic communications. IEEE Commun Lett 19(11):1937–1940. doi: 10.1109/LCOMM.2015.2427806 CrossRefGoogle Scholar
  30. Zhang L, Ijaz A, Xiao P, Quddus A, Tafazolli R (2016) Single-rate and multi-rate multi-service systems for next generation and beyond communications. In: Personal, indoor, and mobile radio communications (PIMRC), 2016 IEEE 27th annual international symposium, pp 1–6. doi: 10.1109/PIMRC.2016.7794635

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rong Wang
    • 1
    • 2
    Email author
  • Jingye Cai
    • 1
  • Xiang Yu
    • 2
  • Jianchun Jiang
    • 2
  1. 1.University of Electronic Science and Technology of ChinaSichuanPeople’s Republic of China
  2. 2.Chongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China

Personalised recommendations