Advertisement

Adaptive access mechanism with delta estimation algorithm of traffic loads for supporting weighted priority in IEEE 802.11e WLANs

  • Chun Shi
  • Shu-Qian HeEmail author
  • Zheng-Jie Deng
  • Xian-Feng Zhang
  • Chong Shen
Original Research

Abstract

Focusing on weighted throughput fairness that nodes get throughput proportions according to priority levels in IEEE 802.11e WLANs, we propose an adaptive and full-distributed access mechanism with delta estimation algorithm of traffic loads. We deduce a linear adjustment rule of Contention Window (CW) about traffic loads, which connects parameters of access mechanism with dynamic network conditions. To support weighted priority levels (WPLs) of throughput proportions, we introduce a priority index to restrict number of successful data transmission of nodes with different priority levels for accurate calculation of channel status information. And then, we give a delta estimation algorithm of traffic loads, which can reduce fluctuations of estimated results around true values. By setting different thresholds corresponding to the WPLs, each node can obtain suitable sizes of CW for better aggregated throughput even as the variations of traffic loads in networks. The selected sizes of CW determine the attempt probability of channel access, which guarantees the weighted fairness of throughput proportions corresponding to WPLs. The simulation results confirm the validity and good scalability of the proposed access mechanism with different ratios of node number between multiple priority levels.

Keywords

Medium access control Weighted fairness Delta estimation Idle slot intervals Weighted priority levels 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (61362016, 61502127, 61562022 and 61562023) and National special project of international cooperation in science and technology (2014DFA13140) and NSF of Hainan (617121).

References

  1. Abu-Khadrah A, Zakaria Z, Othman M, Zin MSIM (2015). Using markov chain model to evaluate the performance of edca protocol under saturation and non-saturation conditions. 10(3):315. doi: 10.15866/irecos.v10i3.5700
  2. Adam H, Yanmaz E, Bettstetter C (2013) Contention-based estimation of neighbor cardinality. IEEE Trans Mob Comput 12(3):542–555. doi: 10.1109/TMC.2012.19 CrossRefGoogle Scholar
  3. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Select Areas Commun 18:535–547. doi: 10.1109/49.840210 CrossRefGoogle Scholar
  4. Bouchemal N, Naja R, Moubarak M, Tohme S (2015). EDCA virtual collision performance evaluation and mobility modeling in V2I communications. Iscc-the Twentieth IEEE Symposium on Computers & Communications, IEEE. pp 463–470. doi: 10.1109/ISCC.2015.7405558
  5. Chakraborty S, Swain P, Nandi S (2013) Proportional fairness in mac layer channel access of ieee 802.11 s edca based wireless mesh networks. Ad Hoc Netw 11(1):570–584. doi: 10.1016/j.adhoc.2012.08.003 CrossRefGoogle Scholar
  6. Chang Z, Zhang X, Guo X et al (2015) Fairness aware rate adaptation and proportional scheduling for IEEE 802.11 WLANs Using FSE. China Commun 12(4):69–75. doi: 10.1109/CC.2015.7114071 CrossRefGoogle Scholar
  7. Chen X, Akinyemi I, Yang SH (2015) A control theoretic approach to achieve proportional fairness in 802.11e edca wlans. Comput Commun 75:39–49. doi: 10.1016/j.comcom.2015.11.002 CrossRefGoogle Scholar
  8. Chen YB, Lin GY, Wei HY (2016). A dynamic estimation of the unsaturated buffer in the ieee 802.11 dcf network: a particle filter framework approach. IEEE Trans Veh Technol, 1–1. doi: 10.1109/TVT.2015.2456975
  9. Choi J, Yoo J, Kim CK (2008) A distributed fair scheduling scheme with a new analysis model in ieee 802.11 wireless lans. IEEE Trans Veh Technol 57(5):3083–3093. doi: 10.1109/TVT.2008.915518 CrossRefGoogle Scholar
  10. Deng DJ, Ke CH, Chen HH, Huang YM (2008) Contention window optimization for ieee 802.11 dcf access control. IEEE Trans Wireless Commun 7(12):5129–5135. doi: 10.1109/T-WC.2008.071259 CrossRefGoogle Scholar
  11. Deng DJ, Lien SY, Lee J, Chen KC (2016) On quality-of-service provisioning in ieee 802.11ax wlans. IEEE Access 4:6086–6104. doi:  10.1109/ACCESS.2016.2602281 CrossRefGoogle Scholar
  12. He Y, Ma X, Ma X, Vasilakos AV, Yuan R, Gong W (2013) Semi-random backoff: towards resource reservation for channel access in wireless lans. IEEE/ACM Trans Netw 21(1):204–217. doi:  10.1109/TNET.2012.2202323 CrossRefGoogle Scholar
  13. Heusse M, Rousseau F, Guillier R, Duda A (2005) Idle sense: an optimal access method for high throughput and fairness in rate diverse wireless LANs. Conference on applications, technologies, architectures, and protocols for computer communications. ACM 35:121–132. doi:  10.1145/1080091.1080107 Google Scholar
  14. IEEE (2007) Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications. IEEE standard. pp C1-1184. doi:  10.1109/IEEESTD.2010.5514475
  15. Javed Y, Baig A, Maqbool M (2015) Enhanced quality of service support for triple play services in IEEE 802.11 WLANs. Eurasip J Wireless Commun Netw (1):9. doi:  10.1186/s13638-014-0233-x
  16. Kadota I, Baiocchi A, Anzaloni A (2014) Kalman filtering: estimate of the numbers of active queues in an 802.11e EDCA WLAN. Elsevier Science Publishers B V. doi:  10.1016/j.comcom.2013.09.010
  17. Kim Y, Hwang G (2017). Delay analysis and optimality of the renewal access protocol. Ann Oper Res 1–22. doi:  10.1007/s10479-015-2065-4
  18. Krishnan S, Chaporkar P (2017). Stochastic approximation based on-line algorithm for fairness in multi-rate wireless LANs. Springer, New York. doi:  10.1007/s11276-016-1243-x CrossRefGoogle Scholar
  19. Lei L, Zhang T, Song X, Cai S, Chen X, Zhou J (2015) Achieving weighted fairness in wlan mesh networks. Ad Hoc Netw 25(PA):117–129. doi:  10.1016/j.adhoc.2014.10.003 CrossRefGoogle Scholar
  20. Nassiri M, Heusse M, Duda A (2008). A novel access method for supporting absolute and proportional priorities in 802.11 WLANs. INFOCOM 2008. The, Conference on Computer Communications. IEEE. pp 709–717. doi:  10.1109/INFOCOM.2008.121
  21. Omar HA, Abboud K, Cheng N, Malekshan KR, Gamage AT, Zhuang W (2016) A survey on high efficiency wireless local area networks: next generation wifi. IEEE Commun Surv Tutorials 18(4):2315–2344. doi:  10.1109/COMST.2016.2554098 CrossRefGoogle Scholar
  22. Patel P, Lobiyal DK (2017) An adaptive contention slot selection mechanism for improving the performance of IEEE 802.11 DCF. Int J Inf Commun Technol 10(3):318. doi: 10.1504/IJICT.2017.083272 Google Scholar
  23. Romdhani L, Ni Q, Turletti T (2003) Adaptive EDCF: enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks. Wireless Communications Networking 2(2):1373–1378. doi:  10.1109/WCNC.2003.1200574 vol). IEEE.Google Scholar
  24. Shi C, Dai X, Liang P, Han Z (2012) Adaptive access mechanism with optimal contention window based on node number estimation using multiple thresholds. IEEE Trans Wireless Commun 11(6):2046–2055. doi:  10.1109/TWC.2012.040412.110080 CrossRefGoogle Scholar
  25. Sun X, Gao Y (2016). Distributed throughput optimization for heterogeneous IEEE 802.11 dcf networks. Wireless Netw, 1–11. doi:  10.1007/s11276-016-1392-y
  26. Syed I, Roh BH (2016). Adaptive backoff algorithm for contention window for dense ieee 802.11 wlans. Mobile Information Systems, 2016, (2016-6-29), 2016, 1–11. doi:  10.1155/2016/8967281
  27. Tinnirello I, Wentink M, Garlisi D, Giuliano F, Bianchi G (2016). MAC design on real 802.11 devices: from exponential to moderated backoff. World of wireless, mobile and multimedia networks. IEEE. 1–6. doi:  10.1109/WoWMoM.2016.7523503
  28. Vercauteren T, Toledo A, Wang X (2007) Batch and sequential bayesian estimators of the number of active terminals in an IEEE 802.11 network. IEEE Press. doi:  10.1109/TSP.2006.885723 zbMATHGoogle Scholar
  29. Xiao Y (2005) Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless lans. IEEE Trans Wireless Commun 4(4):1506–1515. doi:  10.1109/TWC.2005.850328 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chun Shi
    • 1
    • 2
  • Shu-Qian He
    • 1
    Email author
  • Zheng-Jie Deng
    • 1
  • Xian-Feng Zhang
    • 1
  • Chong Shen
    • 3
  1. 1.School of Information Science and TechnologyHainan Normal UniversityHaikouPeople’s Republic of China
  2. 2.Key Laboratory of Underwater Acoustic Communication and Marine Information Technology (Xiamen University), Ministry of EducationXiamenPeople’s Republic of China
  3. 3.School of Information Science and TechnologyHainan UniversityHaikouPeople’s Republic of China

Personalised recommendations