Advertisement

A person re-identification framework by inlier-set group modeling for video surveillance

  • Aparajita NandaEmail author
  • Pankaj K. Sa
  • Dushyant Singh Chauhan
  • Bansidhar Majhi
Original Research
  • 117 Downloads

Abstract

Recognizing the same person across different camera views is crucial and yet difficult task in video surveillance. The difficulty lies in finding the matched image-pair against drastic variations in appearances and structures of the individuals. In this article, we present a three stage person re-identification framework to establish the correspondence among persons observed across non-overlapping camera views. In first stage, we propose to apply an algorithm for handling the illumination variations in image pairs. A pyramidal body partitioning scheme is then introduced to handle the viewpoint variations, in which it segments the pedestrian image into several logical parts. In second stage, we formulate an ensemble weighted hypergraph partitioning strategy that divides the gallery candidates into a set of groups with high intra-group and low inter-group commonality. A weighing scheme is suggested to find the contribution of each feature channel towards defining a group. Furthermore, we generate a set of inlier groups for each probe, where the probability of finding the desired match pair is high. In final stage, contributory weights are fused with the correlation-based similarity measure to find the corresponding match within the inlier group. Extensive experiments are carried out on three challenging datasets to evaluate the effectiveness of our proposed framework. The experimental results demonstrate that the proposed framework can achieve better performance compared with the existing methods.

Keywords

Video surveillance Person re-identification Illumination variations Recognition Ensemble hypergraph Similarity measure 

Notes

Acknowledgements

This work is supported by Grant number SB/FTP/ETA-0059/2014 by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India.

References

  1. Ahmed E, Jones M, Marks TK (2015) An improved deep learning architecture for person re-identification. In: Computer vision and pattern recognition, IEEE, pp 3908–3916. doi: 10.1109/CVPR.2015.7299016
  2. An L, Yang S, Bhanu B (2015) Person re-identification by robust canonical correlation analysis. Signal Process Lett IEEE 22(8):1103–1107. doi: 10.1109/LSP.2015.2390222 CrossRefGoogle Scholar
  3. An L, Kafai M, Yang S, Bhanu B (2016) Person reidentification with reference descriptor. Trans Circ Syst Video Technol IEEE 26(4):776–787. doi: 10.1109/TCSVT.2015.2416561 CrossRefGoogle Scholar
  4. Cheng DS, Cristani M, Stoppa M, Bazzani L, Murino V (2011) Custom pictorial structures for re-identification. In: British machine vision conference (BMVC), vol 1, p 6. doi: 10.5244/C.25.68
  5. da Vinci L (2005) In: The Da Vinci notebooks, profile, pp 1–224, ISBN 1-86197-987-8Google Scholar
  6. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2360–2367. doi: 10.1109/CVPR.2010.5539926
  7. Garcia J, Martinel N, Micheloni C, Gardel A (2015) Person re-identification ranking optimisation by discriminant context information analysis. In: Computer vision (ICCV), IEEE, pp 1305–1313. doi: 10.1109/ICCV.2015.154
  8. Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. In: International workshop on performance evaluation for tracking and surveillance (PETS), vol 3, no 5Google Scholar
  9. Huang S, Yang D, Ge Y, Zhao D, Feng X (2014) Discriminant hyper-Laplacian projections with its application to face recognition. In: Multimedia and expo workshops (ICMEW), IEEE, pp 1–6. doi: 10.1109/ICMEW.2014.6890566
  10. Jobson DJ, Rahman Zu, Woodell GA (1997a) A multiscale retinex for bridging the gap between color images and the human observation of scenes. Trans Image Proces IEEE 6(7):965–976. doi: 10.1109/83.597272 CrossRefGoogle Scholar
  11. Jobson DJ, Rahman Zu, Woodell GA (1997b) Properties and performance of a center/surround retinex. Trans Image Process IEEE 6(3):451–462. doi: 10.1109/83.557356 CrossRefGoogle Scholar
  12. Jojic N, Perina A, Cristani M, Murino V, Frey B (2009) Stel component analysis: modeling spatial correlations in image class structure. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2044–2051. doi: 10.1109/CVPRW.2009.5206581
  13. Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning: applications in VLSI domain. Trans Very Large Scale Integr Syst IEEE 7(1):69–79. doi: 10.1109/DAC.1997.597203 CrossRefGoogle Scholar
  14. Khedher MI, El Yacoubi MA, Dorizzi B (2013) Multi-shot SURF-based person re-identification via sparse representation. In: Advanced video and signal based surveillance (AVSS), IEEE, pp 159–164. doi: 10.1109/AVSS.2013.6636633
  15. Koestinger M, Hirzer M, Wohlhart P, Roth PM, Bischof H (2012) Large scale metric learning from equivalence constraints. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2288–2295. doi: 10.1109/CVPR.2012.6247939
  16. Kviatkovsky I, Adam A, Rivlin E (2013) Color invariants for person reidentification. Trans Pattern Anal Mach Intell IEEE 35(7):1622–1634. doi: 10.1109/TPAMI.2012.246 CrossRefGoogle Scholar
  17. Li A, Liu L, Wang K, Liu S, Yan S (2015) Clothing attributes assisted person reidentification. Trans Circ Syst Video Technol IEEE 25(5):869–878. doi: 10.1109/TCSVT.2014.2352552 CrossRefGoogle Scholar
  18. Li W, Zhao R, Wang X (2012) Human reidentification with transferred metric learning. In: Asian conference on computer vision (ACCV), Springer, pp 31–44. doi: 10.1007/978-3-642-37331-2_3
  19. Li W, Zhao R, Xiao T, Wang X (2014) DeepReId: deep filter pairing neural network for person re-identification. In: Computer vision and pattern recognition, IEEE, pp 152–159. doi: 10.1109/CVPR.2014.27
  20. Li Z, Chang S, Liang F, Huang T, Cao L, Smith J (2013) Learning locally-adaptive decision functions for person verification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 3610–3617. doi: 10.1109/CVPR.2013.463
  21. Liao S, Hu Y, Zhu X, Li SZ (2015) Person re-identification by local maximal occurrence representation and metric learning. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2197–2206. doi: 10.1109/CVPR.2015.7298832
  22. Liu X, Song M, Tao D, Zhou X, Chen C, Bu J (2014) Semi-supervised coupled dictionary learning for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 3550–3557. doi: 10.1109/CVPR.2014.454
  23. Ma B, Su Y, Jurie F (2014) Covariance descriptor based on bio-inspired features for person re-identification and face verification. Image Vis Comput 32(6):379–390. doi: 10.1016/j.imavis.2014.04.002 CrossRefGoogle Scholar
  24. Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical Gaussian descriptor for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 1363–1372. doi: 10.1109/CVPR.2016.152
  25. Pele O, Werman M (2010) The quadratic-chi histogram distance family. In: European conference on computer vision (ECCV), Springer, pp 749–762. doi: 10.1007/978-3-642-15552-9_54
  26. Shi SC, Guo CC, Lai JH, Chen SZ, Hu XJ (2015) Person re-identification with multi-level adaptive correspondence models. Neurocomputing 168:550–559. doi: 10.1016/j.neucom.2015.05.072 CrossRefGoogle Scholar
  27. Strehl A, Ghosh J (2003) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617. doi: 10.1162/153244303321897735 MathSciNetzbMATHGoogle Scholar
  28. Van De Weijer J, Schmid C (2006) Coloring local feature extraction. In: European conference on computer vision (ECCV), Springer, pp 334–348. doi: 10.1007/11744047_26
  29. Wang T, Gong S, Zhu X, Wang S (2014) Person re-identification by video ranking. In: European conference on computer vision (ECCV), Springer, pp 688–703. doi: 10.1007/978-3-319-10593-2_45
  30. Xiong F, Gou M, Camps O, Sznaier M (2014) Person re-identification using kernel-based metric learning methods. In: European conference on computer vision (ECCV), Springer, pp 1–16. doi: 10.1007/978-3-319-10584-0_1
  31. Zelnik-Manor L, Perona P (2004) Self-tuning spectral clustering. In: Advances in neural information processing systems, pp 1601–1608Google Scholar
  32. Zhao R, Ouyang W, Wang X (2013a) Person re-identification by salience matching. In: International conference on computer vision, IEEE, pp 2528–2535. doi: 10.1109/ICCV.2013.314
  33. Zhao R, Ouyang W, Wang X (2013b) Unsupervised salience learning for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 3586–3593. doi: 10.1109/CVPR.2013.460
  34. Zhao R, Ouyang W, Wang X (2014) Learning mid-level filters for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 144–151. doi: 10.1109/CVPR.2014.26
  35. Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015a) Scalable person re-identification: a benchmark. In: International conference on computer vision (ICCV), IEEE, pp 1116–1124. doi: 10.1109/ICCV.2015.133
  36. Zheng L, Wang S, Tian L, He F, Liu Z, Tian Q (2015b) Query-adaptive late fusion for image search and person re-identification. In: Computer vision and pattern recognition (CVPR), pp 1741–1750. doi: 10.1109/CVPR.2015.7298783
  37. Zheng WS, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance comparison. In: Computer vision and pattern recognition (CVPR), IEEE, pp 649–656. doi: 10.1109/CVPR.2011.5995598

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Aparajita Nanda
    • 1
    Email author
  • Pankaj K. Sa
    • 1
  • Dushyant Singh Chauhan
    • 1
  • Bansidhar Majhi
    • 1
  1. 1.Department of Computer Science and EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations