Advertisement

Tweet and followee personalized recommendations based on knowledge graphs

  • Danae Pla KaridiEmail author
  • Yannis Stavrakas
  • Yannis Vassiliou
Original Research

Abstract

Twitter users get the latest tweets of their followees on their timeline. However, they are often overwhelmed by the large number of tweets, which makes it difficult for them to find interesting information among them. In this work, we present an efficient semantic recommendation method that helps users filter the Twitter stream for interesting content. The foundation of this method is a knowledge graph (KG) that can represent all user topics of interest as a variety of concepts, objects, events, persons, entities, locations and the relations between them. Our method uses the KG and graph theory algorithms not yet applied in social network analysis in order to construct user interest profiles by retrieving semantic information from tweets. Next, it produces ranked tweet recommendations. In addition, we use the KG to calculate interest similarity between users, and we present a followee recommender based on the same underlying principles. An important advantage of our method is that it reduces the effects of problems such as over-recommendation and over-specialization. As another advantage, our method is not impaired by the limitations posed by Twitter on the availability of the user graph data. We implemented from scratch the best-known state-of-the-art approaches in order to compare with them and assess our method. Moreover, we evaluate the efficiency and runtime scalability of our method.

Keywords

Social recommendation Content based recommender systems Knowledge graph Tweet recommendation User recommendation 

References

  1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749CrossRefGoogle Scholar
  2. Alonso O et al (2010) “Detecting uninteresting content in text streams”. SIGIR crowdsourcing for search evaluation workshopGoogle Scholar
  3. Armentano MG, Godoy D, Amandi A (2012) Topology-based recommendation of users in micro-blogging communities. J Comput Sci Technol 27(3):624–634CrossRefGoogle Scholar
  4. Balabanović M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40(3):66–72CrossRefGoogle Scholar
  5. Bhattacharya P et al (2014) Inferring user interests in the twitter social network. In: Proceedings of the 8th ACM Conference on recommender systems. ACMGoogle Scholar
  6. Chen K et al (2012) Collaborative personalized tweet recommendation. In: Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. ACMGoogle Scholar
  7. Diaz-Aviles, E et al (2012) What is happening right now... that interests me?: online topic discovery and recommendation in twitter. In: Proceedings of the 21st ACM international conference on Information and knowledge management. ACMGoogle Scholar
  8. Duan Y et al (2010) An empirical study on learning to rank of tweets. In: Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational LinguisticsGoogle Scholar
  9. Ehrlinger L, Wöß W (2016) Towards a Definition of Knowledge Graphs. SEMANTiCSGoogle Scholar
  10. Elmongui HG et al (2015) TRUPI: twitter recommendation based on users’ personal interests. Computational linguistics and intelligent text processing. Springer International Publishing, New York, pp 272–284Google Scholar
  11. Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock JW, Nyberg E, Prager J et al (2010) Building Watson: an overview of the DeepQA project. AI magazine 31(3):59–79CrossRefGoogle Scholar
  12. Gabrilovich E, Markovitch S (2007) Computing semantic relatedness using wikipedia-based explicit semantic analysis. IJCAI 7Google Scholar
  13. Gilbert EN, Pollak HO (1968) “Steiner minimal trees”. SIAM J Appl Math 16(1):1–29MathSciNetCrossRefGoogle Scholar
  14. Hannon J, Bennett M, Smyth B (2010) Recommending twitter users to follow using content and collaborative filtering approaches. In: Proceedings of the fourth ACM conference on recommender systems. ACMGoogle Scholar
  15. Hong L, Doumith AS, Davison BD (2013) Co-factorization machines: modeling user interests and predicting individual decisions in twitter. In: Proceedings of the sixth ACM international conference on Web search and data mining. ACMGoogle Scholar
  16. IJntema W et al (2010) Ontology-based news recommendation. In: Proceedings of the 2010 EDBT/ICDT workshops. ACMGoogle Scholar
  17. Kawamae N (2011) Trend analysis model: trend consists of temporal words, topics, and timestamps. In: Proceedings of the fourth ACM international conference on web search and data mining. ACMGoogle Scholar
  18. Kim Y, Shim K (2011) Twitobi: A recommendation system for twitter using probabilistic modeling.” Data Mining (ICDM), 2011 IEEE 11th International Conference on. IEEEGoogle Scholar
  19. Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACMGoogle Scholar
  20. Lauw HW, Ntoulas A, Kenthapadi K (2010) Estimating the quality of postings in the real-time web. In: Proceeding of SSM conferenceGoogle Scholar
  21. Liu Y et al (2016) A User Adaptive Model for Followee Recommendation on Twitter. International Conference on Computer Processing of Oriental Languages. Springer International PublishingGoogle Scholar
  22. Lu C, Lam W, Zhang Y (2012) Twitter user modeling and tweets recommendation based on wikipedia concept graph. Workshops at the twenty-sixth AAAI Conference on artificial intelligenceGoogle Scholar
  23. Mehlhorn K(1988) A faster approximation algorithm for the Steiner problem in graphs. Inf Process Lett 27(3):125–128MathSciNetCrossRefGoogle Scholar
  24. Naveed N et al (2011) Bad news travel fast: a content-based analysis of interestingness on twitter. In: Proceedings of the 3rd International Web Science Conference. ACMGoogle Scholar
  25. Pazzani MJ, Muramatsu J, Billsus D (1996) Syskill and Webert: identifying interesting web sites. AAAI/IAAI, Vol 1Google Scholar
  26. Pennacchiotti M et al (2012) Making your interests follow you on twitter. In: Proceedings of the 21st ACM international conference on information and knowledge management. ACMGoogle Scholar
  27. Pla-Karidi D (2016) From user graph to topics graph: towards twitter followee recommendation based on knowledge graphs. Data Engineering workshops (ICDEW), 2016 IEEE 32nd international conference on. IEEEGoogle Scholar
  28. Pla-Karidi D, Stavrakas Y, Vassiliou Y (2016) A personalized tweet recommendation approach based on concept graphs. The 13th IEEE International conference on ubiquitous intelligence and computing (UIC)Google Scholar
  29. Ramage D, Dumais ST, Liebling DJ (2010) Characterizing microblogs with topic models. ICWSM 10:1–1Google Scholar
  30. Rendle S (2011) Factorization machines with libFM. ACM Trans Intell Syst Technol (TIST) 3(3):57Google Scholar
  31. bib id="bib2">Rendle S, Schmidt-Thieme L (2008) Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In: Proceedings of the 2008 ACM conference on recommender systems. ACMGoogle Scholar
  32. Rodríguez FM, Torres LM, Garza SE (2016) Followee recommendation in Twitter using fuzzy link prediction. Expert Syst 33(4):349–361CrossRefGoogle Scholar
  33. Romero DM et al (2011) Influence and passivity in social media. Machine learning and knowledge discovery in databases. Springer, Berlin, pp 18–33CrossRefGoogle Scholar
  34. Sarwar B et al (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on world wide web. ACMGoogle Scholar
  35. Sarwar BM et al (2002) Recommender systems for large-scale e-commerce: Scalable neighborhood formation using clustering. In: Proceedings of the fifth international conference on computer and information technology. Vol 1Google Scholar
  36. Schafer JH et al (2007) Collaborative filtering recommender systems. The adaptive web. Springer, Berlin, pp 291–324Google Scholar
  37. Schein AI et al (2002) Methods and metrics for cold-start recommendations. In: Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval. ACMGoogle Scholar
  38. Sharma A et al (2016) GraphJet: real-time content recommendations at twitter. Proc VLDB Endow 9(13):1281–1292CrossRefGoogle Scholar
  39. Shi Y, Larson M, Hanjalic A (2009) Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering. In: Proceedings of the third ACM conference on recommender systems. ACMGoogle Scholar
  40. Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intell 2009:4CrossRefGoogle Scholar
  41. Subercaze J, Gravier C, Laforest F (2016) Real-time, scalable, content-based Twitter users recommendation. Web Intelligence 14(1):17–29. doi: 10.3233/WEB-160329 CrossRefGoogle Scholar
  42. Tajbakhsh MS, Bagherzadeh J (2016) Microblogging Hash Tag Recommendation System Based on Semantic TF-IDF: Twitter use case. Future internet of things and cloud workshops (FiCloudW), IEEE international conference on. IEEEGoogle Scholar
  43. Uysal I, Croft WB (2011) User oriented tweet ranking: a filtering approach to microblogs. In: Proceedings of the 20th ACM international conference on Information and knowledge management. ACMGoogle Scholar
  44. Wang M, Ma J(2016) A novel recommendation approach based on users’ weighted trust relations and the rating similarities. Soft Comput 20(10):3981–3990CrossRefGoogle Scholar
  45. Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining.ACMGoogle Scholar
  46. Weng J et al (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on web search and data mining. ACM,Google Scholar
  47. Yang, MC, Rim HC (2014) Identifying interesting Twitter contents using topical analysis. Expert Syst Appl 41(9):4330–4336CrossRefGoogle Scholar
  48. Yang MC et al (2012) Finding interesting posts in twitter based on retweet graph analysis. In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval. ACMGoogle Scholar
  49. Yigit M, Bilal E Karahoca A (2015) Extended topology based recommendation system for unidirectional social networks. Expert Syst Appl 42(7):3653–3661CrossRefGoogle Scholar
  50. Zhao F et al (2016) A personalized hashtag recommendation approach using LDA-based topic model in microblog environment. Future Generation Comput Syst 65:196–206CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.IMISAthena RCAthensGreece
  2. 2.NTUAAthensGreece

Personalised recommendations