A new traffic route analyzer for commuter’s guidance in developing countries: application study in Islamabad, Pakistan

  • Wasim Sohail Hashmi Syed
  • Ambreen Jabbar
  • Maqbool Uddin Shaikh
  • Ansar-Ul-Haque Yasar
  • Davy Janssens
  • Stephane Galland
Original Research

Abstract

Growth of population in the capital city of Pakistan—Islamabad—is too high. This growth rate has caused a negative impact on the smooth flow of traffic system. The aim of this paper is to provide a solution to facilitate the car-based commuters to pick the route with minimal bottlenecks and to minimize the distance to reach the destination. The proposed solution is to manage and control the traffic system in the city of Islamabad. The current traffic data collection system in Islamabad and other urban areas does not provide timely and reliable data that can be useful to the Regional Transportation Authority for planning activities. To overcome this problem, our approach is based on collecting the missing data using a custom-built mobile app. Our system analyses and manipulates the collected information based on artificial neural network scheme that can indicate the bottlenecks for each route and predicts the shortest route based on the user’s severity levels. To validate our proposed approach, we tested six different randomly selected routes in Islamabad with different bottlenecks.

Keywords

Evolutionary algorithm Neural network Nodes Routes Traffic flow Telemetry 

References

  1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey, Comput Netw, 38(4):393–422. doi:10.1016/S1389-1286(01)00302-4 (ISSN 1389–1286) CrossRefGoogle Scholar
  2. Astarita V, Bertini R, d’Elia S, Guido G (2006) Motorway traffic parameter estimation from mobile phone counts, Eur J Oper Res 175(3):1435–1446. doi:10.1016/j.ejor.2005.02.020 (ISSN 0377–2217) CrossRefMATHGoogle Scholar
  3. Bar-Gera H (2007) Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: A case study from Israel. Transp Res Part C Emerg Technol 15(6):380–391. doi:10.1016/j.trc.2007.06.003 (ISSN 0968-090X) CrossRefGoogle Scholar
  4. Chen RC, Hsieh CF, Chang WL (2016) Using ambient intelligence to extend network lifetime in wireless sensor networks. J Ambient Intell Humaniz Comput 7. doi:10.1007/s12652-015-0323-6 (Springer)
  5. Giordani I, Archetti F (2016) Models and architectures for emergency management. J Ambient Intell Humaniz Comput Springer. doi:10.1007/s12652-016-0417-9 Google Scholar
  6. Jeong R, Rilett R (2004) Bus arrival time prediction using artificial neural network model. In: Intelligent Transportation Systems. Proceedings. The 7th International IEEE Conference on 2004 Oct 3, pp. 988–993. IEEEGoogle Scholar
  7. López V, Huiszoon B, Fernández-Palacios J, González de Dios O and Aracil J (2010) Path computation element in telecom networks: Recent developments and standardization activities, 2010 14th Conference on Optical Network Design and Modeling (ONDM), Kyoto, pp. 1–6. doi:10.1109/ONDM.2010.5431606.
  8. Saukh O, Hasenfratz D, Thiele L (2014) Route selection for mobile sensor nodes on public transport networks. J Ambient Intell Humaniz Comput 5. doi:10.1007/s12652-012-0170-7 (Springer)
  9. Syed W. H., Yasar A, Janssens D, Wets G (2014) Analyzing the real time factors: which causing the traffic congestions and proposing the solution for Pakistani City. Proced Comput Sci 32:413–420. doi:10.1016/j.procs.2014.05.442 (ISSN 1877–0509) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wasim Sohail Hashmi Syed
    • 1
  • Ambreen Jabbar
    • 1
  • Maqbool Uddin Shaikh
    • 2
  • Ansar-Ul-Haque Yasar
    • 3
  • Davy Janssens
    • 3
  • Stephane Galland
    • 4
  1. 1.Higher Education Commission (HEC)IslamabadPakistan
  2. 2.COMSATS Institute of Information TechnologyIslamabadPakistan
  3. 3.Transportation Research InstituteHasselt UniversityHasseltBelgium
  4. 4.Université de Technologie de Belfort-MontbéliardBelfortFrance

Personalised recommendations