Analysis and visualization of meteorological emergencies

  • Emanuele Cipolla
  • Umberto Maniscalco
  • Riccardo Rizzo
  • Dario Stabile
  • Filippo VellaEmail author
Original Research


The capability to sample and store meteorological information across a wide area allows to analyze the historical evolution of data and to extract events that are potentially bound to emergency and critical events. In this contribution we detect events when a station shows values that are sensibly different from the neighbor stations. We check the co-occurrence of these events with emergency reported in web news. Results are encouraging and show how the statistical analysis can allow to forecast emergencies and to reduce the impact of critical situations.


Emergency detection Spatial data mining Human computer interaction Big data visualization 


  1. Breunig MM, Kriegel H-P, Ng RT, Sander J (1999) Optics-of: identifying local outliers. In: Principles of data mining and knowledge discovery. Springer, Berlin, pp 262–270Google Scholar
  2. Budalakoti S, Srivastava A, Akella R, Turkov E (2006) Anomaly detection in large sets of high-dimensional symbol sequences. NASA Ames Research Center, Tech. Rep. NASA TM-2006-214553Google Scholar
  3. Cabrera JB, Lewis L, Mehra RK (2001) Detection and classification of intrusions and faults using sequences of system calls. Acm sigmod Rec 30(4):25–34CrossRefGoogle Scholar
  4. Chandola V, Mithal V, Kumar V (2008) Comparative evaluation of anomaly detection techniques for sequence data. In: 2008 Eighth IEEE international conference on data mining, IEEE. IEEE, pp 743–748Google Scholar
  5. Cipolla E, Vella F (2014) Identification of spatio-temporal outliers through minimum spanning tree. In: Tenth international conference on signal-image technology and internet-based systems, SITIS 2014, Marrakech, Morocco, November 23–27, 2014, pp 248–255Google Scholar
  6. Dasgupta D, Nino F (2000) A comparison of negative and positive selection algorithms in novel pattern detection. In: Systems, man, and cybernetics, 2000 IEEE international conference on, vol 1, IEEE. IEEE, pp 125–130Google Scholar
  7. Dean RB, Dixon WJ (1951) Simplified statistics for small numbers of observations. doi: 10.1021/ac60052a025
  8. Dobkin D, Friedman S, Supowit K (1990) Delaunay graphs are almost as good as complete graphs. Discrete Comput Geom 5(1):399–407. doi: 10.1007/BF02187801 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Endler D (1998) Intrusion detection. Applying machine learning to Solaris audit data. In: Computer Security Applications Conference, 1998. Proceedings 14th Annual, IEEE. IEEE, pp 268–279Google Scholar
  10. Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S (2002) A geometric framework for unsupervised anomaly detection. In: Applications of data mining in computer security. Springer, Berlin, pp 77–101Google Scholar
  11. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231Google Scholar
  12. Evangelista PF, Bonnisone P, Embrechts MJ, Szymanski BK (2005) Fuzzy roc curves for the 1 class svm: application to intrusion detection. In: Proceedings international joint conference on neural networks, IJCNN, CiteseerGoogle Scholar
  13. Florez-Larrahondo G, Bridges SM, Vaughn R (2005) Efficient modeling of discrete events for anomaly detection using hidden markov models. In: Information security. Springer, Berlin, pp 506–514Google Scholar
  14. Galarus DE, Angryk RA, Sheppard JW (2012) Automated weather sensor quality control. In: FLAIRS Conference, pp 388–393Google Scholar
  15. Gao B, Ma HY, Yang YH (2002) Hmms (hidden markov models) based on anomaly intrusion detection method. In: Machine learning and cybernetics, 2002. Proceedings 2002 International Conference on, vol 1, IEEE. IEEE, pp 381–385Google Scholar
  16. Ghosh AK, Schwartzbard A, Schatz M (1999) Learning program behavior profiles for intrusion detection. In: Workshop on intrusion detection and network monitoring, vol 51462Google Scholar
  17. Ghosh AK, Wanken J, Charron F (1998) Detecting anomalous and unknown intrusions against programs. In: Computer security applications conference, 1998. Proceedings 14th Annual, IEEE. IEEE, pp 259–267Google Scholar
  18. González FA, Dasgupta D (2003) Anomaly detection using real-valued negative selection. Genet Program Evolvable Mach 4(4):383–403CrossRefGoogle Scholar
  19. Gould BA (1855) On Peirce’s criterion for the rejection of doubtful observations, with tables for facilitating its application. Astron J 4:81–87. doi: 10.1086/100480 CrossRefGoogle Scholar
  20. Gupta M, Gao J, Aggarwal C, Han J (2014) Outlier detection for temporal data:a survey. Trans Knowl Data Eng 25(1):1–20Google Scholar
  21. Izakian H (2013) Anomaly detection in time series data using a fuzzy c-means clustering. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp 1513–1518Google Scholar
  22. Kang D-K, Fuller D, Honavar V (2005) Learning classifiers for misuse detection using a bag of system calls representation. In: Intelligence and security informatics. Springer, Berlin, pp 511–516Google Scholar
  23. Kowalski AM, Martín MT, Plastino A, Judge G (2012) On extracting probability distribution information from time series. Entropy 14(10):1829–1841CrossRefzbMATHGoogle Scholar
  24. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. In: Proceedings of the american mathematical society, vol 7Google Scholar
  25. Lee W, Stolfo SJ (1998) Data mining approaches for intrusion detection. In: Usenix SecurityGoogle Scholar
  26. Li X, Han J, Kim S, Gonzalez H (2007) ROAM: rule-and motif-based anomaly detection in massive moving object data sets. In: SDM, vol 7, SIAM. SIAM, pp 273–284Google Scholar
  27. Lin J, Ye D, Chen C, Gao M (2008) Minimum spanning tree based spatial outlier mining and its applications. In: Rough sets and knowledge technology. Springer, Berlin, pp 508–515Google Scholar
  28. Liu W, Zheng Y, Chawla S, Yuan J, Xing X (2011) Discovering spatio-temporal causal interactions in traffic data streams. In: Proc. of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York. ISBN 978-1-4503-0813-7. doi: 10.1145/2020408.2020571
  29. Marceau C (2001) Characterizing the behavior of a program using multiple-length n-grams. In: Proceedings of the 2000 workshop on new security paradigms, ACM. ACM, pp 101–110Google Scholar
  30. Nairac A, Townsend N, Carr R, King S, Cowley P, Tarassenko L (1999) A system for the analysis of jet engine vibration data. Integr Comput Aided Eng 6(1):53–66Google Scholar
  31. Ng RT, Han J (2002) Clarans: a method for clustering objects for spatial data mining. Knowl Data Eng IEEE Trans 14(5):1003–1016CrossRefGoogle Scholar
  32. Pan X, Tan J, Kavulya S, Gandhi R, Narasimhan P (2010) Ganesha: blackbox diagnosis of mapreduce systems. ACM SIGMETRICS Perform Eval Rev 37(3):8–13CrossRefGoogle Scholar
  33. Rorabacher DB (1991) Statistical treatment for rejection of deviant values: critical values of dixon Q parameter and related subrange ratios at the 95 percent confidence level. Anal Chem 63(2):139–146CrossRefGoogle Scholar
  34. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423623656MathSciNetCrossRefzbMATHGoogle Scholar
  35. Shekhar S, Lu C-T, Zhang P (2003) A unified approach to spatial outliers detection. GeoInformatica 7:139–166CrossRefGoogle Scholar
  36. Tobler W (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46(2):234–240CrossRefGoogle Scholar
  37. Vella F, Infantino I, Gaglio S, Vetrano G (2012) Image segmentation through a hierarchy of minimum spanning trees. In: Intern. Conf. on signal image technology and internet based systems, Naples, pp 381–388. doi: 10.1109/SITIS.2012.62
  38. Yao Y, Sharma A, Golubchik L, Govindan R (2010) Online anomaly detection for sensor systems: a simple and efficient approach. Perform Eval 67(11):1059–1075CrossRefGoogle Scholar
  39. Zhao J, Lu C-T, Kou Y (2003) Detecting region outliers in meteorological data. In: GIS, ACM, New York, pp 49–55Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Emanuele Cipolla
    • 1
  • Umberto Maniscalco
    • 1
  • Riccardo Rizzo
    • 1
  • Dario Stabile
    • 1
  • Filippo Vella
    • 1
    Email author
  1. 1.Institute for High Performance Computing and Networking, National Research Council of ItalyRomeItaly

Personalised recommendations