Achieving consensus in self-organizing multi agent systems for smart microgrids computing in the presence of interval uncertainty

  • Giuseppina Formato
  • Luigi Troiano
  • Alfredo VaccaroEmail author
Original Research


Self-organizing multi agent systems, namely cooperative agent networks employing decentralized computing paradigms based on dynamic populations of mutually coupled oscillators, are assuming a major role in supporting the large-scale deployment of smart microgrids (SMGs). The adoption of these architectures would allow the agents to compute the main global variables characterizing the SMG operation without the need for a central fusion center. Thanks to this feature, all of the basic SMG control and monitoring functions could be processed according to a totally decentralized/non-hierarchical computing paradigm. Anyway, effectiveness of these architectures on real environment should face several issues not fully explored in the literature. Amongst these, the effect of data uncertainty has been recognized as one of the most critical issue to address. In trying and fixing this problem, this paper proposes new formalizations of the decentralized consensus protocols based on the use of Interval Arithmetic. The application of this reliable consensus protocols to decentralized SMG computing is explained in detail and several numerical results are presented and discussed in order to assess the effectiveness of the proposed approach.


Smart microgrid Self-organizing multi agent system  Consensus protocol Interval Arithmetic 


  1. Barbarossa S (2005) Self-organizing sensor networks with information propagation based on mutual coupling of dynamic systems. In: Proc Intl workshop on wireless ad-hoc networks (IWWAN)Google Scholar
  2. Barbarossa S, Scutari G (2007) Decentralized maximum-likelihood estimation for sensor networks composed of nonlinearly coupled dynamical systems. IEEE Trans Signal Process 55(7):3456–3470. ISSN 1053–587X. doi: 10.1109/TSP.2007.893921 Google Scholar
  3. Bolognani S, Carron A, Di Vittorio A, Romeres D, Schenato L, Zampieri S (2012) Distributed multi-hop reactive power compensation in smart micro-grids subject to saturation constraints. In: 2012 IEEE 51st annual conference on decision and control (CDC), pp 1118–1123. doi: 10.1109/CDC.2012.6426317
  4. Capriglione D, Ferrigno L, Paciello V, Pietrosanto A, Vaccaro A (2013) On the performance of consensus protocols for decentralized smart grid metering in presence of measurement uncertainty. In: Instrumentation and measurement technology conference (I2MTC), 2013 IEEE, International, pp 1176–1181. doi: 10.1109/I2MTC.2013.6555599
  5. Cho C, Jeon J-H, Kim J-Y, Kwon S, Park K, Kim S (2011) Active synchronizing control of a microgrid. IEEE Trans Power Electron 26(12):3707–3719. ISSN 0885–8993. doi: 10.1109/TPEL.2011.2162532 Google Scholar
  6. Cortés J (2008) Distributed algorithms for reaching consensus on general functions. Automatica 44(3):726–737. ISSN 0005–1098. doi: 10.1016/j.automatica.2007.07.022 Google Scholar
  7. Delvenne J-C, Carli R, Zampieri S (2009) Optimal strategies in the average consensus problem. Syst Control Lett 58(10–11):759–765. ISSN 0167–6911. doi:  10.1016/j.sysconle.2009.08.005 Google Scholar
  8. Di Bisceglie M, Galdi C, Vaccaro A, Villacci D (2009) Cooperative sensor networks for voltage quality monitoring in smart grids. In: PowerTech, 2009 IEEE Bucharest, pp 1–6. doi: 10.1109/PTC.2009.5282012
  9. Di Bisceglie M, Ullo S, Vaccaro A (2012) The role of cooperative information spreading paradigms for smart grid monitoring. In: Electrotechnical conference (MELECON), 2012 16th IEEE Mediterranean, pp 814–817. doi: 10.1109/MELCON.2012.6196554
  10. Dimeas A, Hatziargyriou N (2004) A multiagent system for microgrids. In: Power Engineering Society General Meeting, 2004, vol 1. IEEE, pp 55–58. doi: 10.1109/PES.2004.1372752
  11. Dimeas A, Hatziargyriou N (2007) Agent based control for microgrids. In: Power Engineering Society General Meeting, 2007. IEEE, pp 1–5. doi: 10.1109/PES.2007.386064
  12. Dimeas A, Hatziargyriou N (2009) Control agents for real microgrids. In: 15th international conference on intelligent system applications to power systems, 2009. ISAP ’09, pp 1–5. doi: 10.1109/ISAP.2009.5352865
  13. EU Research Project Microgrids.
  14. Gungor V, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, Hancke G (2013) A survey on smart grid potential applications and communication requirements. IEEE Trans Ind Inf 9(1):28–42. ISSN 1551–3203. doi: 10.1109/TII.2012.2218253 Google Scholar
  15. Iacoviello A, Loia V, Pietrosanto A, Vaccaro A (2013) Decentralized consensus protocols: the enabler for smarter grids monitoring. In: 2013 27th International conference on advanced information networking and applications workshops (WAINA), pp 1559–1564. doi: 10.1109/WAINA.2013.228
  16. Katiraei F, Iravani R, Hatziargyriou N, Dimeas A (2008) Microgrids management. Power and Energy Magazine, IEEE 6(3):54–65. ISSN 1540–7977. doi: 10.1109/MPE.2008.918702
  17. Kravets R, Calvert K, Schwan K (1998) Payoff adaptation of communication for distributed interactive applications. J High Speed Netw 7(3–4):301–317Google Scholar
  18. Lasseter B (2001) Microgrids [distributed power generation]. In: Power Engineering Society Winter Meeting, 2001. IEEE, vol 1, pp 146–149. doi: 10.1109/PESW.2001.917020
  19. Loia V, Vaccaro A (2014) Decentralized economic dispatch in smart grids by self-organizing dynamic agents. IEEE Trans Syst Man Cybern Syst 44(4):397–408. ISSN 2168–2216. doi: 10.1109/TSMC.2013.2258909 Google Scholar
  20. Loia V, Furno D, Vaccaro A (2013a) Decentralised smart grids monitoring by swarm-based semantic sensor data analysis. Int J Syst Control Commun 5(1):1–14. ISSN 1755–9340. doi: 10.1504/IJSCC.2013.054144 Google Scholar
  21. Loia V, Vaccaro A, Vaisakh K (2013b) A self-organizing architecture based on cooperative fuzzy agents for smart grid voltage control. IEEE Trans Ind Inf 9(3):1415–1422. ISSN 1551–3203. doi: 10.1109/TII.2013.2249074 Google Scholar
  22. Moore RE, Bierbaum F (1979) Methods and applications of interval analysis (SIAM Studies in Applied and Numerical Mathematics). Soc for Industrial and Applied Mathematics. ISBN 0898711614Google Scholar
  23. Olfati-Saber R, Murray R (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533. ISSN 0018–9286. doi: 10.1109/TAC.2004.834113 Google Scholar
  24. Perfilieva I (2006) Fuzzy transforms: theory and applications. Fuzzy Sets Syst 157(8):993–1023CrossRefzbMATHMathSciNetGoogle Scholar
  25. Pipattanasomporn M, Feroze H, Rahman S (2009) Multi-agent systems in a distributed smart grid: design and implementation. In: Power systems conference and exposition, 2009. PSCE ’09. IEEE/PES, pp 1–8. doi: 10.1109/PSCE.2009.4840087
  26. Rietz R, Suryanarayanan S (2008) A review of the application of analytic hierarchy process to the planning and operation of electric power microgrids. In: 40th North American power Symposium, 2008. NAPS ’08. pp 1–6. doi: 10.1109/NAPS.2008.5307403
  27. Sansawatt T, Ochoa L, Harrison G (2010) Integrating distributed generation using decentralised voltage regulation. In: Power and Energy Society General Meeting, 2010 IEEE. doi: 10.1109/PES.2010.5588127
  28. Scutari G, S. Barbarossa, and L. Pescosolido. Distributed decision through self-synchronizing sensor networks in the presence of propagation delays and asymmetric channels. IEEE Trans Signal Process 56(4):1667–1684. ISSN 1053–587X. doi: 10.1109/TSP.2007.909377
  29. Stefanini L (2009) Fuzzy transform and smooth functions. In: IFSA/EUSFLAT Conf, pp 579–584Google Scholar
  30. Stol J, De Figueiredo LH (1997) Self-validated numerical methods and applications. Monograph for 21st Brazilian Mathematics Colloquium, IMPA, Rio de JaneiroGoogle Scholar
  31. Troiano L (2010) Fuzzy co-transform and its application to time series. In: 2010 International conference of soft computing and pattern recognition (SoCPaR), pp 379–384. doi: 10.1109/SOCPAR.2010.5686735
  32. Troiano L, Kriplani P (2011) Supporting trading strategies by inverse fuzzy transform. Fuzzy Sets Syst 180(1):121–145 (Fuzzy Transform as a New Paradigm in Fuzzy Modeling). ISSN 0165–0114. doi: 10.1016/j.fss.2011.05.004 Google Scholar
  33. Tsikalakis A, Hatziargyriou N (2008) Centralized control for optimizing microgrids operation. IEEE Trans Energy Convers 23(1):241–248. ISSN 0885–8969. doi: 10.1109/TEC.2007.914686 Google Scholar
  34. Vaccaro A, Villacci D (2009) Radial power flow tolerance analysis by interval constraint propagation. IEEE Trans Power Syst 24(1):28–39. ISSN 0885–8950. doi: 10.1109/TPWRS.2008.2009383 Google Scholar
  35. Vaccaro A, Zobaa A (2011) Cooperative fuzzy controllers for autonomous voltage regulation in smart grids. J Ambient Intell Hum Comput 2(1):1–10. ISSN 1868–5137. doi: 10.1007/s12652-010-0027-x Google Scholar
  36. Vaccaro A, Zobaa AF (2013) Voltage regulation in active networks by distributed and cooperative meta-heuristic optimizers. Electric Power Syst Res 99(0):9–17. ISSN 0378–7796. doi: 10.1016/j.epsr.2013.01.013
  37. Vaccaro A, Velotto G, Zobaa A (2011) A decentralized and cooperative architecture for optimal voltage regulation in smart grids. IEEE Trans Ind Electron 58(10):4593–4602. ISSN 0278–0046. doi: 10.1109/TIE.2011.2143374 Google Scholar
  38. Williams B, Gahagan M, Dromey I, Costin K (2012) Using distributed decision-making to optimize power distribution and support microgrids. In: Power and Energy Society General Meeting, 2012 IEEE, pp 1–6. doi: 10.1109/PESGM.2012.6345743
  39. Yang P, Freeman R, Lynch K (2008) Multi-agent coordination by decentralized estimation and control. IEEE Trans Autom Control 53(11):2480–2496. ISSN 0018–9286. doi: 10.1109/TAC.2008.2006925 Google Scholar
  40. Zhang Z, Chow M-Y (2011) Incremental cost consensus algorithm in a smart grid environment. In: Power and Energy Society General Meeting, 2011 IEEE, pp 1–6. doi: 10.1109/PES.2011.6039422

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Giuseppina Formato
    • 1
    • 2
  • Luigi Troiano
    • 2
  • Alfredo Vaccaro
    • 1
    • 2
    Email author
  1. 1.Dipartimento di Informatica, Consorzio di Ricerca Sistema ad Agenti, CORISAUniversity of SalernoSalernoItaly
  2. 2.Department of EngineeringUniversity of SannioBeneventoItaly

Personalised recommendations