Perceiving and interpreting smart home datasets with \(\mathcal{PI}\)

  • Juan Ye
  • Graeme Stevenson
  • Simon Dobson
  • Michael O’Grady
  • Gregory O’Hare
Original Research

Abstract

Pervasive healthcare systems facilitate various aspects of research including sensor technology, software technology, artificial intelligence and human-computer interaction. Researchers can often benefit from access to real-world data sets against which to evaluate new approaches and algorithms. Whilst more than a dozen data sets are currently publicly available, their use of heterogeneous mark-up impedes widespread and easy use. We describe \(\mathcal{PI}\)—the Perceiver and semantic Interpreter—which offers a workbench API for the querying, re-structuring and re-purposing of a range of diverse data formats currently in use. The use of a single API reduces cognitive overload, improves access, and supports integration of generic and domain-specific information within a common framework.

Keywords

Smart home Pervasive healthcare Context modelling Activity recognition 

References

  1. Berners-Lee T (2005) Notation 3: a compact RDF syntax. http://www.w3.org/DesignIssues/Notation3. Accessed 23 April 2012
  2. Chen H (2004) An intelligent broker architecture for pervasive context-aware systems. PhD thesis, University of MarylandGoogle Scholar
  3. CHI-Workshop (2009) CHI-workshop on developing shared home behavior datasets to advance HCI and ubiquitous computing research. http://boxlab.wikispaces.com/List+of+Home+Datasets. Accessed 23 April 2012
  4. Chu X, Buyya R (2007) Service oriented sensor web. In: Sensor Networks and Configuration, Springer, Berlin Heidelberg, pp 51–74Google Scholar
  5. Cook D, Edgecombe MS, Crandall A, Sanders C, Thomas B (2009) Collecting and disseminating smart home sensor data in the CASAS project. In: Proceedings of the CHI 2009 workshopsGoogle Scholar
  6. Cook DJ, Das SK (2007) How smart are our environments? An updated look at the state of the art. Pervasive Mob Comput 3(2):53–73CrossRefGoogle Scholar
  7. Gu T, Pung HK, Zhang DQ (2005) A service-oriented middleware for building context-aware services. J Netw Comput Appl 28(1):1–18CrossRefGoogle Scholar
  8. Hagglund M, Scandurra I, Mostrom D, Koch S (2007) Bridging the gap: a virtual health record for integrated home care. Int J Integr Care 7(27)Google Scholar
  9. Hossein S, Hedal S, Mendez-Vasquez A (2009) Sensory data set description language specification. Tech. Rep. SDDL_Specification_v1.0, University of FloridaGoogle Scholar
  10. JSON (2002) Javascript object notation (JSON). http://www.json.org/. Accessed 23 April 2012
  11. van Kasteren T, Noulas A, Englebienne G, Kröse B (2008) Accurate activity recognition in a home setting. In: Proceedings of International Conference on Ubiquitous Computing (UbiComp ’08), ACM, pp 1–9Google Scholar
  12. Logan B, Healey J, Philipose M, Tapia EM, Intille SS (2007) A long-term evaluation of sensing modalities for activity recognition. In: Proceeding of International Conference on Ubiquitous Computing (Ubicomp 2007), Innsbruck, Austria, pp 483–500Google Scholar
  13. Pentney W, Philipose M, Bilmes J, Kautz H (2007) Learning large scale common sense models of everyday life. In: Proceedings of AAAI 2007, pp 465–470Google Scholar
  14. Provenance (2006) PML2 provenance ontology. http://iw.stanford.edu/2006/06/pml-provenance.owl. Accessed 23 April 2012
  15. Román M, Hess C, Cerqueira R, Ranganathan A, Campbell RH, Nahrstedt K (2002) Gaia: a middleware platform for active spaces. SIGMOBILE Mobile Comput Commun Rev 6:65–67CrossRefGoogle Scholar
  16. Russomanno D, Kothari C, Thomas O (2005a) Sensor ontologies: From shallow to deep models. In: Proceedings of the 37th Southeastern Symposium on System Theory (SSST ’05), pp 107–112Google Scholar
  17. Russomanno DJ, Kothari CR, Thomas OA (2005b) Building a sensor ontology: a practical approach leveraging ISO and OGC models. In: Proceedings of the 2005 International Conference on Artificial Intelligence, Las Vegas, USA, pp 637–643Google Scholar
  18. Stevenson G, Knox S, Dobson S, Nixon P (2009) Ontonym: a collection of upper ontologies for developing pervasive systems. In: Proceedings of the 1st Workshop on Context, Information and Ontologies, ACM, Heraklion, Greece, p 1–8Google Scholar
  19. la Torre FD, Hodgins J, Montano J, Valcarcel S, Bargteil A, Martin X, Macey J, Collado A, Beltran P (2008) Guide to the carnegie mellon university multimodal activity (CMU-MMAC) database. Tech. Rep. CMU-RI-TR-08-22, Robotics Institute, Carnegie Mellon UniversityGoogle Scholar
  20. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann San FransiscoGoogle Scholar
  21. Yang AY, Jafari R, Sastry SS, Bajcsy R (2009) Distributed recognition of human actions using wearable motion sensor networks. J Ambient Intell Smart Environ 1:103–115Google Scholar
  22. Ye J, Coyle L, Dobson S, Nixon P (2007) Ontology-based models in pervasive computing systems. Knowl Eng Rev 22:315–347CrossRefGoogle Scholar
  23. Ye J, McKeever S, Coyle L, Neely S, Dobson S (2008) Resolving uncertainty in context integration and abstraction. In: Proceedings of International Conference on Pervasive Services (ICPS 2008), ACM, pp 131–140Google Scholar
  24. Ye J, Stevenson G, Dobson S, O’Grady M, O’Hare G (2011) Pi: Perceiver and interpreter of smart home datasets. In: Proceedings of the 5th International ICST Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2011), Dublin, IrelandGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Juan Ye
    • 1
  • Graeme Stevenson
    • 1
  • Simon Dobson
    • 1
  • Michael O’Grady
    • 2
  • Gregory O’Hare
    • 2
  1. 1.School of Computer ScienceUniversity of St AndrewsSt AndrewsUK
  2. 2.University College DublinDublinIreland

Personalised recommendations