Journal of Visualization

, Volume 22, Issue 1, pp 141–160 | Cite as

Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling

  • Liyan Liu
  • Hongxin ZhanEmail author
  • Jiaxin Liu
  • Jiaju Man
Regular Paper


Analyzing of traffic data is an important task for urban planners and managers. Traffic data have the spatio-temporal characteristics, which can reflect the variation of the presence of vehicle in different places over time as well as traffic flow dynamics among different places. The analysis of large-scale GPS trajectory data is a very challenging research due to the complexity of data and the need to extract useful information under cover in data. In this study, we combine temporal and geospatial aggregation of traffic data for obtaining key areas and creating legible traffic flow maps; meanwhile, we make full use of the topic model to capture latent semantic information. Nevertheless, most of the topic models always encounter the plague of choosing the optimal number of topics and cannot easily incorporate numerous types of user feedback. To tackle these problems, we propose an interactive topic modeling equipped with various interactive capabilities which empowers users to explore data from different levels of detail. Finally, we design and implement an interactive visual analytics prototype system based on the spatio-temporal graphs and the interactive topic modeling. The feasibility and validity of our system is demonstrated by conducting two case studies with a real-world traffic data in Hangzhou.

Graphical Abstract


Traffic data Topic modeling Visual analysis Semantic analysis Data visualization 



The authors thank anonymous reviewers for their valuable comments, which is of great importance to improve the quality this work. The research was supported by National Key R&D Program of China (2018YFB1004904) and Alibaba-Zhejiang University Joint Institute of Frontier Technologies.


  1. Adrienko N et al (2011) Spatial generalization and aggregation of massive movement data. IEEE Trans Vis Comput Gr 17(2):205–219CrossRefGoogle Scholar
  2. Al-Dohuki S, Wu Y, Kamw F, Yang J, Li X, Zhao Y, Ye X, Chen W, Ma C, Wang F (2017) Semantictraj: a new approach to interacting with massive taxi trajectories. IEEE Trans Vis Comput Gr 23(1):11–20CrossRefGoogle Scholar
  3. Arora S, Ge R, Moitra A (2012) Learning topic models—going beyond SVD. Foundations of computer science, pp 1–10Google Scholar
  4. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022zbMATHGoogle Scholar
  5. Cao L, Feifei L (2007) Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: International conference on computer vision, pp 1–8Google Scholar
  6. Chen W, Huang Z, Wu F et al (2018) VAUD: a visual analysis approach for exploring spatio-temporal urban data. IEEE Trans Vis Comput Graph 24(9):2636–2648Google Scholar
  7. Chu D, Sheets DA, Zhao Y, Wu Y, Yang J, Zheng M, Chen G (2014) Visualizing hidden themes of taxi movement with semantic transformation. In: IEEE pacific visualization symposium, pp 137–144Google Scholar
  8. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman RA (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6):391–407CrossRefGoogle Scholar
  9. Eldin DM (2016) Enhancement bag-of-words model for solving the challenges of sentiment analysis. Int J Adv Comput Sci Appl 7(1):244–252. Google Scholar
  10. Ester M, Kriegel H, Sander J, Xu X (1996) Density-based algorithm for discovering clusters in large spatial databases with noise. In: Knowledge discovery and data mining, pp 226–231Google Scholar
  11. Ferreira N, Poco J, Vo HT, Freire J, Silva CT (2013) Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips. IEEE Trans Vis Comput Gr 19(12):2149–2158CrossRefGoogle Scholar
  12. Guo D, Zhu X (2014) Origin-destination flow data smoothing and mapping. IEEE Trans Vis Comput Graph 20(12):2043–2052CrossRefGoogle Scholar
  13. Hofmann T (1999) Probabilistic latent semantic analysis. In: International acm sigir conference on research and development in information retrieval, pp 50–57Google Scholar
  14. Huang X, Zhao Y, Ma C, Yang J, Ye X, Zhang C (2016) Trajgraph: a graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Trans Vis Comput Gr 22(1):160–169CrossRefGoogle Scholar
  15. Kraak M-J (2003) The space–time cube revisited from a geovisualization perspective. In: International cartographic conference, pp 1988–1996Google Scholar
  16. Krueger R, Thom D, Ertl T (2014) Visual analysis of movement behavior using web data for context enrichment. In: IEEE pacific visualization symposium, pp 193–200Google Scholar
  17. Kuhn HW (1955) The hungarian method for the assignment problem. Nav Res Logist Q 2(1):83–97MathSciNetCrossRefzbMATHGoogle Scholar
  18. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Computer vision and pattern recognition, pp 2169–2178Google Scholar
  19. Lee DD, Sebastian SH (2001) Algorithms for non-negative matrix factorization. In: Neural information processing systems, pp 556–562Google Scholar
  20. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791CrossRefzbMATHGoogle Scholar
  21. Liu H, Gao Y, Lu L, Liu S, Qu H, Ni LM (2011) Visual analysis of route diversity. In: Visual analytics science and technology, pp 171–180Google Scholar
  22. Liu D, Weng D, Li Y, Bao YJ, Zheng Huaming Qu, Yingcai Wu (2017) Smartadp: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Trans Vis Comput Gr 23(1):1–10CrossRefGoogle Scholar
  23. Porteous I, Newman D, Ihler AT, Asuncion AU, Smyth P, Welling M (2008) Fast collapsed gibbs sampling for latent dirichlet allocation. In: Knowledge discovery and data mining, pp 569–577Google Scholar
  24. Salton G, Yang C, Yu CT (1974) A theory of term importance in automatic text analysis. J Am Soc Inf Sci 26(1):33–44CrossRefGoogle Scholar
  25. Salton G, Wong A, Yang C (1975) A vector space model for automatic indexing. Commun ACM 18(11):613–620CrossRefzbMATHGoogle Scholar
  26. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE symposium on visual languages, pp 336–343Google Scholar
  27. Sun G, Liang R, Qu H, Wu Y (2017) Embedding spatio-temporal information into maps by route-zooming. IEEE Trans Vis Comput Gr 23(5):1506–1519CrossRefGoogle Scholar
  28. Tang Y, Sheng F, Zhang H, Shi C, Qin X, Fan J (2018) Visual analysis of traffic data based on topic modeling. J Vis 21:1–20CrossRefGoogle Scholar
  29. Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical dirichlet processes. J Am Stat Assoc 101(476):1566–1581MathSciNetCrossRefzbMATHGoogle Scholar
  30. Van Erven T, Harremos P (2014) Rnyi divergence and Kullback–Leibler divergence. IEEE Trans Inf Theory 60(7):3797–3820CrossRefzbMATHGoogle Scholar
  31. Von Landesberger T, Brodkorb F, Roskosch P, Andrienko NV, Andrienko GL, Kerren A (2016) Mobilitygraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans Vis Comput Gr 22(1):11–20CrossRefGoogle Scholar
  32. Wakamiya S, Ryong L, Kawai Y, Sumiya K (2015) Twitter-based urban area characterization by non-negative matrix factorization. In: International conference on big data, pp 128–135Google Scholar
  33. Wang Z, Min L, Yuan X, Zhang J, Van De Wetering H (2013) Visual traffic jam analysis based on trajectory data. IEEE Trans Vis Comput Gr 19(12):2159–2168CrossRefGoogle Scholar
  34. Wu W, Zheng Y, Cao N, Zeng H, Ni B, Qu H, Ni LM (2017) Mobiseg: interactive region segmentation using heterogeneous mobility data. In: IEEE pacific visualization symposium, pp 91–100Google Scholar
  35. Yuan NJ, Zheng Y, Xie X, Wang Y, Zheng K, Xiong H (2015) Discovering urban functional zones using latent activity trajectories. IEEE Trans Knowl Data Eng 27(3):712–725CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2018

Authors and Affiliations

  1. 1.State Key Laboratory of HPC&SIP (MOE of China) and College of Mathematics and StatisticsHunan Normal UniversityChangshaChina
  2. 2.State Key Laboratory of CAD & CGZhejiang University and Alibaba-Zhejiang University Joint Institute of Frontier TechnologiesHangzhouChina
  3. 3.State Key Laboratory of CAD & CGZhejiang UniversityHangzhouChina

Personalised recommendations