Journal of Visualization

, Volume 22, Issue 3, pp 609–624 | Cite as

OccVis: a visual analytics system for occultation data

  • Shiyu Cheng
  • Guihua ShanEmail author
  • Jun Liu
  • Yang Gao
  • Ping Wei
  • Weihua Bai
  • Danyang Zhao
Regular Paper


The FY-3C satellite returns more than 250,000 occultation data each year, each of which records high vertical resolution profiles of various climatic parameters in the range of 0–1000 km above the Earth. These long-term, stable, and globally distributed observations can be used to improve climate modeling and analyze trends in spatial climate. However, traditional methods based on small samples meet challenges in analyzing the multi-dimensional occultation data in large volume. In this paper, we developed OccVis-a visual analytics system for multi-dimensional and multi-scale comparative analysis of occultation data. With a novel workflow, a series of data processing methods are proposed to support data correcting, patching, and clustering. Moreover, a matrix view with two modes is presented for overview, and a detail view along with time series view is provided for further analysis. Domain scientists can easily utilize our system to visually and interactively explore multivariable occultation data at different time and space scales. Finally, we conduct case studies in climate modeling of ionosphere and obtain several preliminary results to demonstrate the usage and effectiveness of our system.

Graphical abstract


Visual analytics Spatiotemporal visualization Multi-scale visualization Occultation data 



This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA19080102, the National Key Program for Science and Technology Research and Development (2017YFB0203300), and Key Research Program of Frontier Sciences, CAS, Grant No. QYZDB-SSW-SMC004-02.


  1. Andrienko G, Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements. In: IEEE symposium on visual analytics science and technology. VAST’08. IEEE, pp 51–58Google Scholar
  2. Andrienko N, Andrienko G (2010) Spatial generalization and aggregation of massive movement data. IEEE Trans Vis Comput Graph 17(2):205–219MathSciNetGoogle Scholar
  3. Andrienko G, Andrienko N, Rinzivillo S, et al. Interactive visual clustering of large collections of trajectories. IEEE Symposium on Visual Analytics Science and Technology, 2009. VAST 2009. IEEE, 2009:3-10Google Scholar
  4. Bai WH, Sun YQ, Du QF, Yang GL, Yang ZD, Zhang P, Bi YM, Wang XY, Cheng C, Han Y (2014) An introduction to the FY3 GNOS instrument and mountain-top tests. Atmos Meas Technol 7:1817–1823Google Scholar
  5. Bai W, Wang G, Sun Y et al (2016) Application of Fengyun 3-C GNSS occulation sounder for assessing global ionospheric response to magnetic storm event. Atmos Meas Tech Discuss 1:1–20Google Scholar
  6. Biondi R, Steiner AK, Kirchengast G, et al (2015) Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation. In: ICHMT SPRAY-05 heat and mass transfer in spray systems, pp 29395–29428Google Scholar
  7. Brunner L, Steiner AK, Scherllinpirscher B et al (2015) Exploring atmospheric blocking with GPS radio occultation observations. Atmos Chem Phys 16(7):4593–4604Google Scholar
  8. Ester M (1996) A Density-based algorithm for discovering clusters in large spatial databases with noise. In: ACM International Conference on Knowledge Discovery and Data Mining (KDD), pp 226–231Google Scholar
  9. Fishbach FF (1965) A satellite method for temperature and pressure below 24 km. Bull Am Meteorol Soc 9:528–532Google Scholar
  10. Frank A (1998) Different types of times in GIS. In: Egenhofer MJ, Golledge RG (eds) Spatial and temporal reasoning in GIS. Oxford University Press, New York, pp 40–62Google Scholar
  11. Graves A (1997) Long short-term memory. Neural Comput 9(8):1735–1780Google Scholar
  12. Hao MC, Dayal U, Keim DA, et al (2005) Importance-driven visualization layouts for large time series data. In: IEEE symposium on information visualization. IEEE, pp 203–210Google Scholar
  13. Hao M, Dayal U, Keim D, et al (2007) Multi-resolution techniques for visual exploration of large time-series data. In: IEEE VGTC conference on visualization joint eurographics. Eurographics Association, pp 27–34Google Scholar
  14. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780Google Scholar
  15. Hong F, Chen S, Guo H, et al (2017) Visual exploration of ionosphere disturbances for earthquake research. In: SIGGRAPH Asia 2017 symposium on visualization, pp 1–8Google Scholar
  16. Jing Z, Liu J, Li C (2017) Research and discussion on the international reference ionosphere model. J Guilin Univ Technol 37(1):114–119MathSciNetGoogle Scholar
  17. Ken S (1985) Animating rotation with quaternion curves. ACM Siggraph Comput Graph 19(3):245–254Google Scholar
  18. Liang K, Junbo H, Dong J, et al (2018) Design and verification of open loop tracking technology for GPS atmospheric occultation. In: China satellite navigation academic annual conferenceGoogle Scholar
  19. Liao M, Zhang P, Yang GL et al (2016) Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C. Atmos Meas Tech 9(2):781–792Google Scholar
  20. Lusignan B, Modrell G, Morrison A, Pomalaza J, Ungar SG (1969) Sensing the Earth’s atmosphere with occultation satellites. Proc IEEE 4:458–467Google Scholar
  21. Ma Z, Guo Y, W Bin (2011) The GPS radio occultation data and its current operational applications to the numerical weather prediction. Acta Meteorol Sin 69(1):208–218Google Scholar
  22. Nykiel G, Zanimonskiy YM, Yampolski YM et al (2017) Efficient usage of dense GNSS networks in central Europe for the visualization and investigation of ionospheric TEC variations. Sensors 17(10):1Google Scholar
  23. Olkin CB et al (2014) Pluto’s atmospheric structure from the July 2007 stellar occultation. Icarus 239:15–22Google Scholar
  24. Qi Z (2011) The design of automatic sun tracking system based on ARM. Hunan University, Changsha ShiGoogle Scholar
  25. Robert K, Dennis T, Michael W et al (2013) Trajectory lenses—a set-based filtering and exploration technique for long-term trajectory data. Comput Graph Forum 32(3pt4):451–460Google Scholar
  26. Romano V, Pau S, Pezzopane M et al (2013) ESWua: a tool to manage and access GNSS ionospheric data from mid-to-high latitudes. Ann Geophys 56(2):1861–1867Google Scholar
  27. Scherllinpirscher B, Steiner AK, Kirchengast G (2014) Deriving dynamics from GPS radio occultation: three-dimensional wind fields for monitoring the climate. Geophys Res Lett 41(20):7367Google Scholar
  28. Schreiner W, Sokolovskiy S, Hunt D, Rocken C, Kuo Y-H (2011) Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos Meas Tech 4:2255–2272Google Scholar
  29. Shanbhag P, Rheingans P, Desjardins M (2005) Temporal visualization of planning polygons for efficient partitioning of geo-spatial data. In: Proceedings of the 2005 IEEE symposium on information visualization. IEEE Computer Society, p 28Google Scholar
  30. Tominski C, Andrienko N, Andrienko N et al (2012) Stacking-based visualization of trajectory attribute dat. IEEE Trans Vis Comput Graph 18(12):2565–2574Google Scholar
  31. Wang Z, Ye T, Lu M et al (2014) Visual Exploration of sparse traffic trajectory data. IEEE Trans Vis Comput Graph 20(12):1813–1822Google Scholar
  32. Wang S, Zhu G et al (2015) For the first time fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne BeiDou system radio occultation. Acta Phys Sin 64(8):089301.1–089301.8Google Scholar
  33. Wood J, Dykes J, Slingsby A et al (2007) Interactive visual exploration of a large spatio-temporal dataset: reflections on a geovisualization mashup. IEEE Trans Vis Comput Graph 13(6):1176–1183Google Scholar
  34. Wu X (2008) Radio occultation technique for ionosphere detection. Chinese Academy of Sciences Graduate School of the Chinese Academy of Sciences, BeijingGoogle Scholar
  35. Yang GL, Sun YQ, Bai WH et al (2018) Validation results of NmF2 and hmF2 derived from ionospheric density profiles of GNOS on FY-3C satellite. Sci China Technol Sci 1:1–12Google Scholar
  36. Zhang Y, Luo W, Mack EA et al (2016) Visualizing the impact of geographical variations on multivariate clustering. Comput Graph Forum 35(3):101–110Google Scholar
  37. Zhao Y, Luo F, Chen M et al (2019) Evaluating multi-dimensional visualizations for understanding fuzzy clusters. IEEE Trans Vis Comput Graph 25(1):1–10Google Scholar
  38. Ziegler H, Jenny M, Gruse T, Keim DA (2010) Visual market sector analysis for financial time series data. In: Proceedings of the IEEE symposium on visual analytics science and technology, Salt Lake City, UT, pp 83–90Google Scholar

Copyright information

© The Visualization Society of Japan 2019

Authors and Affiliations

  1. 1.Computer Network Information CenterChinese Academy of SciencesBeijingChina
  2. 2.National Space Science CenterChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations