Visualizing spatial interaction characteristics with direction-based pattern maps

  • Xin Yao
  • Lun Wu
  • Di Zhu
  • Yong Gao
  • Yu LiuEmail author
Regular Paper


In the era of big data, large amounts of detailed spatial interaction data are readily available due to the increasing pervasiveness of location-aware devices and techniques. Such data are often applied in the research of spatial structures, land use characteristics, and human activity regularities. However, visualizing such data on maps is a great challenge. Existing approaches either encounter overlapping and intersection problems, which may cause information loss or distortion, or are unable to present interaction characteristics. Consequently, the functional and positional features of places and human mobility trends are not fully demonstrated. We propose direction-based pattern maps, a new visualization method to display the spatial interaction pattern of every place by aggregating spatial interaction data in cardinal directions. This approach can well represent local interaction characteristics and is applicable to different spatial scales. Owing to regular hexagonal tessellations, it can avoid cluttering problems and maintain a geographical context. A case study using Beijing taxi trip data is conducted to validate the usefulness of our approach.

Graphical Abstract


Spatial interaction Geovisualization Data abstraction Spatial pattern 



This research was supported by the National Natural Science Foundation of China (Grant Nos. 41830645, 41625003, and 41771425), the National Key R&D Program of China (Grant No. 2017YFB0503602), and the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems (Grant No. 011177220010020).

Supplementary material

12650_2018_543_MOESM1_ESM.mp4 (12.7 mb)
Supplementary material 1 (MP4 12999 kb)
12650_2018_543_MOESM2_ESM.txt (1 kb)
Supplementary material 2 (TXT 0 kb)


  1. Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 343(6178):1520–1522CrossRefGoogle Scholar
  2. Andrienko N, Andrienko G (2011) Spatial generalization and aggregation of massive movement data. IEEE Trans Visual Comput Graph 17(2):205–219CrossRefGoogle Scholar
  3. Andrienko G, Andrienko N, Fuchs G, Wood J (2017) Revealing patterns and trends of mass mobility through spatial and temporal abstraction of origin-destination movement data. IEEE Trans Visual Comput Graphics 23(9):2120–2136CrossRefGoogle Scholar
  4. Batten DF, Boyce DE (1987) Spatial interaction, transportation, and interregional commodity flow models. In: Nijkamp P (ed) Handbook of regional and urban economics, vol 1. Elsevier, Amsterdam, pp 357–406CrossRefGoogle Scholar
  5. Birkin M, Clarke G, Clarke M (2010) Refining and operationalizing entropy-maximizing models for business applications. Geogr Anal 42(4):422–445CrossRefGoogle Scholar
  6. Brewer CA, Pickle L (2002) Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann Assoc Am Geogr 92(4):662–681CrossRefGoogle Scholar
  7. Brewer CA, Hatchard GW, Harrower MA (2003) ColorBrewer in print: a catalog of color schemes for maps. Cartogr Geogr Inf Sci 30(1):5–32CrossRefGoogle Scholar
  8. Buchin K, Speckmann B, Verbeek K (2011) Flow map layout via spiral trees. IEEE Trans Visual Comput Graphics 17(12):2536–2544CrossRefGoogle Scholar
  9. Cano RG, Buchin K, Castermans THA, Pieterse A, Sonke WM, Speckmann B (2015) Mosaic drawings and cartograms. Comput Graph Forum 34(3):361–370CrossRefGoogle Scholar
  10. Carr DB, Olsen AR, White D (1992) Hexagon mosaic maps for display of univariate and bivariate geographical data. Cartogr Geogr Inf Syst 19(4):228–236Google Scholar
  11. Chen S, Chen S, Wang Z, Liang J, Yuan X, Cao N, Wu Y (2016). D-Map: visual analysis of ego-centric information diffusion patterns in social media. In: Proceedings of IEEE conference on visual analytics science and technology (VAST’16), pp 41–50Google Scholar
  12. Cui W, Zhou H, Qu H, Wong PC, Li X (2008) Geometry-based edge clustering for graph visualization. IEEE Trans Vis Comput Graph 14(6):1277–1284CrossRefGoogle Scholar
  13. Dacey MF (1965) The geometry of central place theory. Geografiska annaler. Ser B Hum Geogr 47(2):111–124CrossRefGoogle Scholar
  14. Dent BD, Torguson JS, Hodler TW (1999) Cartography: thematic map design, 5th edn. WCB/McGraw-Hill, BostonGoogle Scholar
  15. Drake DAR, Mandrak NE (2010) Least-cost transportation networks predict spatial interaction of invasion vectors. Ecol Appl 20(8):2286–2299CrossRefGoogle Scholar
  16. Evans IS (1977) The selection of class intervals. Trans Inst Br Geogr 2(1):98–124CrossRefGoogle Scholar
  17. Fotheringham AS (1981) Spatial structure and distance-decay parameters. Ann Assoc Am Geogr 71(3):425–436Google Scholar
  18. Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer Academic Publishers, DordrechtGoogle Scholar
  19. Goodchild MF, Yuan M, Cova TJ (2007) Towards a general theory of geographic representation in GIS. Int J Geogr Inf Sci 21(3):239–260CrossRefGoogle Scholar
  20. Guo D (2007) Visual analytics of spatial interaction patterns for pandemic decision support. Int J Geogr Inf Sci 21(8):859–877CrossRefGoogle Scholar
  21. Guo D, Zhu X, Jin H, Gao P, Andris C (2012) Discovering spatial patterns in origin-destination mobility data. Trans GIS 16(3):411–429CrossRefGoogle Scholar
  22. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190Google Scholar
  23. Jenny B, Stephen DM, Muehlenhaus I, Marston BE, Sharma R, Zhang E, Jenny H (2016) Design principles for origin-destination flow maps. Cartogr Geogr Inf Sci 45(1):62–75CrossRefGoogle Scholar
  24. Jiang X, Zheng C, Tian Y, Liang R (2015) Large-scale taxi O/D visual analytics for understanding metropolitan human movement patterns. J Vis 18(2):185–200CrossRefGoogle Scholar
  25. Kamgar-Parsi B, Sander WA (1989) Quantization error in spatial sampling: comparison between square and hexagonal pixels. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition 1989 (CVPR ‘89), pp 604–611Google Scholar
  26. Kong X, Liu Y, Wang Y, Tong D, Zhang J (2017) Investigating public facility characteristics from a spatial interaction perspective: a case study of Beijing hospitals using taxi data. ISPRS Int J GeoInf 6(2):38CrossRefGoogle Scholar
  27. Lam DN, Quattrochi DA (1992) On the issues of scale, resolution, and fractal analysis in the mapping sciences. Prof Geogr 44(1):88–98CrossRefGoogle Scholar
  28. Lam H, Bertini E, Isenberg P, Plaisant C, Carpendale S (2011). Seven guiding scenarios for information visualization evaluation. Technical Report, University of Calgary.
  29. Liu X, Gong L, Gong Y, Liu Y (2015a) Revealing travel patterns and city structure with taxi trip data. J Transp Geogr 43:78–90CrossRefGoogle Scholar
  30. Liu Y, Liu X, Gao S, Gong L, Kang C, Zhi Y, Chi G, Shi L (2015b) Social sensing: a new approach to understanding our socioeconomic environments. Ann Assoc Am Geogr 105(3):512–530CrossRefGoogle Scholar
  31. Liu X, Kang C, Gong L, Liu Y (2016) Incorporating spatial interaction patterns in classifying and understanding urban land use. Int J Geogr Inf Sci 30(2):334–350CrossRefGoogle Scholar
  32. Masser I, Brown PJ (1977) Spatial representation and spatial interaction. Pap Reg Sci Assoc 38(1):71–92CrossRefGoogle Scholar
  33. Murray AT, Liu Y, Rey SJ, Anselin L (2012) Exploring movement object patterns. Ann Reg Sci 49(2):471–484CrossRefGoogle Scholar
  34. Rae A (2009) From spatial interaction data to spatial interaction information? Geovisualisation and spatial structures of migration from the 2001 UK census. Comput Environ Urban Syst 33(3):161–178CrossRefGoogle Scholar
  35. Robertson PK, O’Callaghan JF (1986) The generation of color sequences for univariate and bivariate mapping. IEEE Comput Graph Appl 6(2):24–32CrossRefGoogle Scholar
  36. Roy JR, Thill JC (2004) Spatial interaction modelling. Pap Reg Sci 83(1):339–361CrossRefGoogle Scholar
  37. Sahr K, White D, Kimerling AJ (2003) Geodesic discrete global grid systems. Cartogr Geogr Inf Sci 30(2):121–134CrossRefGoogle Scholar
  38. Taylor PJ (1975) Distance decay in spatial interactions. In: Openshaw S (ed) Concepts and techniques in modern geography. Geo Books, Norwick, pp 3–35Google Scholar
  39. Tobler WR (1976) Spatial interaction patterns. J Environ Syst 6(4):271–301CrossRefGoogle Scholar
  40. Tobler WR (1987) Experiments in migration mapping by computer. Am Cartogr 14(2):155–163CrossRefGoogle Scholar
  41. Trumbo BE (1981) A theory for coloring bivariate statistical maps. Am Stat 35(4):220–226Google Scholar
  42. Von Landesberger T, Brodkorb F, Roskosch P, Andrienko N, Andrienko G, Kerren A (2016) MOBILITYGRAPHS: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans Vis Comput Graph 22(1):11–20CrossRefGoogle Scholar
  43. Wattenberg M (2002) Arc diagrams: visualizing structure in strings. In: Proceedings of the IEEE symposium on information visualization 2002 (INFOVIS 2002), pp 110–116Google Scholar
  44. Wood J, Dykes J, Slingsby A (2010) Visualisation of origins, destinations and flows with OD maps. Cartogr J 47(2):117–129CrossRefGoogle Scholar
  45. Wüthrich CA, Stucki P (1991) An algorithmic comparison between square-and hexagonal-based grids. CVGIP: Graph Models Image Process 53(4):324–339Google Scholar
  46. Yang Y, Dwyer T, Goodwin S, Marriott K (2017) Many-to-many geographically-embedded flow visualisation: an evaluation. IEEE Trans Vis Comput Graph 23(1):411–420CrossRefGoogle Scholar
  47. Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):29CrossRefGoogle Scholar
  48. Zhu X, Guo D (2014) Mapping large spatial flow data with hierarchical clustering. Trans GIS 18(3):421–435CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2019

Authors and Affiliations

  1. 1.Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space SciencesPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations