Advertisement

Journal of Visualization

, Volume 21, Issue 3, pp 511–523 | Cite as

Analogy-based volume exploration using ellipsoidal Gaussian transfer functions

  • Xiaoke Bao
  • Yunhai Wang
  • Zhanglin Cheng
  • Changhe Tu
  • Fangfang Zhou
  • Baoquan Chen
Regular Paper
  • 153 Downloads

Abstract

Much effort has been made on multidimensional transfer function, which is designed for effective exploration of 3D scalar datasets. But now, existing solution for designing transfer function typically focuses on exploring volume independently without any prior knowledge. It remains, however, a big challenge for us to reuse the explored knowledge, experience and results in scientific visualization. In this paper, we present a novel technique that employs an analogy-based approach. It aims to facilitate automatic volume exploration for multiple datasets which may share common context or features. The kernel of our approach is using the template scheme. With the introduction of the Gaussian Mixture Model, we adopt this new scheme to modeling, designing and transferring—they are processed in the data histogram space. Then, we integrate this scheme into two-dimensional transfer function design. The result shows that the interesting features can easily be captured with little user workload after adopting our approach.

Graphical Abstract

Keywords

Volume exploration Transfer function Gaussian mixture mode Analogy 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for the valuable comments. This work is supported by the Grants of NSFC (61772315, 61379091, 61402540, 61672538, 61332015 ), NSFC-Guangdong Joint Fund (U1501255), the National Key Research & Development Plan of China (2016YFB1001404), Science Challenge Project (No. TZ2016002), Shandong Provincial Natural Science Foundation (2016ZRE27617), and the Fundamental Research Funds of Shandong University.

References

  1. Akiba H, Fout N, Ma K (2006) Simultaneous classification of time-varying volume data based on the time histogram. In: Proceedings of IEEE/Eurographics Symposium on Visualization’06, pp 171–178Google Scholar
  2. Correa C, Ma K (2008) Size-based transfer functions: a new volume exploration technique. IEEE Trans Vis Comput Gr 14(6):1380–1387CrossRefGoogle Scholar
  3. Correa C, Ma K (2009) The occlusion spectrum for volume visualization and classification. IEEE Trans Vis Comput Gr 15(6):1465–1472CrossRefGoogle Scholar
  4. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38Google Scholar
  5. Drori I, Cohen-Or D, Yeshurun H (2003) Fragment-based image completion. ACM Trans Gr 22(3):303–312CrossRefGoogle Scholar
  6. Fujishiro I, Azuma T, Takeshima Y (1999) Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis. In: Proceedings of IEEE Visualization’99, pp 467–563Google Scholar
  7. Gentner D, Holyoak K, Takeshima Y (1999) The analogical mind: perspectives from cognitive science. The MIT Press, CambridgeGoogle Scholar
  8. Hertzmann A, Jacobs C, Oliver N, Curless B, Salesin D (2001) Image analogies. In: Proceedings of SIGGRAPH’01, Citeseer, pp 327–340Google Scholar
  9. Jankun-Kelly T, Ma K (2001) A study of transfer function generation for time-varying volume data. In: Proceedings of Eurographics/IEEE TCVG workshop on volume graphics’01, pp 51–68Google Scholar
  10. Kawamura T, Idomura Y, Miyamura H, Takemiya H (2017) Algebraic design of multi-dimensional transfer function using transfer function synthesizer. J Vis 20(1):151–162.  https://doi.org/10.1007/s12650-016-0387-1 CrossRefGoogle Scholar
  11. Kindlmann G, Durkin J (1998) Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE symposium on volume visualization’98, pp 79–86Google Scholar
  12. Kniss J, Kindlmann G, Hansen C (2001) Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of IEEE visualization’01, pp 255–262Google Scholar
  13. Kniss J, Premoze S, Ikits M, Lefohn A, Hansen C, Praun E (2003) Gaussian transfer functions for multi-field volume visualization. In: Proceedings of IEEE Visualization’03, pp 65–72Google Scholar
  14. Lee T, Shen H (2009) Visualization and exploration of temporal trend relationships in multivariate time-varying data. IEEE Trans Vis Comput Gr 15(6):1359–1366CrossRefGoogle Scholar
  15. Levoy M (1988) Display of surfaces from volume data. IEEE Comput Gr Appl 8(3):29–37CrossRefGoogle Scholar
  16. Ma K (2003) Visualizing time-varying volume data. Comput Sci Eng 5:34CrossRefGoogle Scholar
  17. Maciejewski R, Wu I, Chen W, Ebert D (2009) Structuring feature space: a non-parametric method for volumetric transfer function generation. IEEE Trans Vis Comput Gr 15(6):1473–1480CrossRefGoogle Scholar
  18. Pfister H, Lorensen B, Bajaj C, Kindlmann G, Schroeder W, Avila L, Martin K, Machiraju R, Lee J (2001) The transfer function bake-off. IEEE Comput Gr Appl 21(3):16–22CrossRefGoogle Scholar
  19. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing. IEEE Concurr 6(4):79Google Scholar
  20. Sato Y, Westin C, Bhalerao A, Nakajima S, Shiraga N, Tamura S, Kikinis R (2000) Tissue classification based on 3D local intensity structures forvolume rendering. IEEE Trans Vis Comput Gr 6(2):160–180CrossRefGoogle Scholar
  21. Scheidegger C, Vo H, Koop D, Freire J, Silva C (2007) Querying and creating visualizations by analogy. IEEE Trans Vis Comput Gr 13(6):1560CrossRefGoogle Scholar
  22. Selver M, Güzelis C (2009) Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks. IEEE Trans Vis Comput Gr 15(3):395–409CrossRefGoogle Scholar
  23. Sfikas G, Constantinopoulos C, Likas A, Galatsanos N (2005) An analytic distance metric for Gaussian mixture models with application in image retrieval. In: Proceedings of artificial neural networks, pp 835–840Google Scholar
  24. Shapira L, Shamir A, Cohen-Or D (2009) Image appearance exploration by model-based navigation. Comput Gr Forum, Wiley Online Libr 28:629–638CrossRefGoogle Scholar
  25. Tzeng F, Ma K (2004) A cluster-space visual interface for arbitrary dimensional classification of volume data. In: Proceedings of IEEE/Eurographics symposium on visualization’04, pp 17–24Google Scholar
  26. Tzeng F, Ma K (2005) Intelligent feature extraction and tracking for visualizing large-scale 4d flow simulations. In: Proceedings of the 2005 ACM/IEEE conference on supercomputing, p 6Google Scholar
  27. Tzeng F, Lum E, Ma K (2005) An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans Vis Comput Gr 11(3):273–284CrossRefGoogle Scholar
  28. Wang L, Giesen J, McDonnell K, Zolliker P, Mueller K (2008) Color design for illustrative visualization. IEEE Trans Vis Comput Gr 14(6):1739–1754CrossRefGoogle Scholar
  29. Wang Y, Chen W, Shan G, Dong T, Chi X (2010) Volume exploration using ellipsoidal gaussian transfer functions. In: Visualization symposium (PacificVis), 2010 IEEE Pacific, IEEE, pp 25–32Google Scholar
  30. Winston P (1980) Learning and reasoning by analogy. Commun ACM 23(12):689–703CrossRefGoogle Scholar
  31. Woodring J, Shen H (2009a) Multiscale time activity data exploration via temporal clustering visualization spreadsheet. IEEE Trans Vis Comput Gr 15(1):123–137CrossRefGoogle Scholar
  32. Woodring J, Shen HW (2009b) Semi-automatic time-series transfer functions via temporal clustering and sequencing. Comput Gr Forum 28(3):791–798CrossRefGoogle Scholar
  33. Zhang Z (1998) Determining the epipolar geometry and its uncertainty: a review. Int J Comput Vis 27(2):161–195CrossRefGoogle Scholar
  34. Zhou J, Takatsuka M (2009) Automatic transfer function generation using contour tree controlled residue flow model and color harmonics. IEEE Trans Vis Comput Gr 15(6):1481–1488CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2017

Authors and Affiliations

  • Xiaoke Bao
    • 1
  • Yunhai Wang
    • 1
  • Zhanglin Cheng
    • 2
  • Changhe Tu
    • 1
  • Fangfang Zhou
    • 3
  • Baoquan Chen
    • 1
  1. 1.Shandong UniversityQingdaoChina
  2. 2.Shenzhen Institutes of Advanced TechnologyShenzhenChina
  3. 3.Central South UniversityChangshaChina

Personalised recommendations