Advertisement

Journal of Visualization

, Volume 21, Issue 1, pp 105–115 | Cite as

Parameter influence on the evolution of low-aspect-ratio rectangular synthetic jets

  • Lei Wang
  • Li-Hao FengEmail author
  • Jin-Jun Wang
  • Tian Li
Regular Paper

Abstract

The evolution of low-aspect-ratio rectangular synthetic jets is investigated with dye and laser-induced-fluorescence (LIF) flow visualization techniques. This paper analyzes the impacts of three key parameters on the evolution of vortical structures, respectively, including orifice aspect-ratio (AR), dimensionless stroke length, and Reynolds number. Compared with circular synthetic jet, all the rectangular synthetic jets display vortex ring axis switching, and may develop into two types of stream-wise vortices I and II. The evolution of the vortex ring and the generation of stream-wise vortices are influenced by three parameters. In particular, stream-wise vortices are not detected for a low AR, stroke length or Reynolds number case.

Graphical Abstract

Keywords

Flow control Rectangular synthetic jets Parameter influence Axis switching Stream-wise vortices 

Notes

Acknowledgements

This work was supported by the Sino-German Center for Research Promotion (No. GZ1280), and the Fundamental Research Funds for the Central Universities of China (Nos. YWF-16-BJ-Y-06 and YWF-16-JCTD-A-05).

References

  1. Amitay M, Cannelle F (2006) Evolution of finite span synthetic jets. Phys Fluids 18(5):054101CrossRefzbMATHGoogle Scholar
  2. Amitay M, Smith DR, Kibens V, Parekh DE, Glezer A (2001) Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J 39(3):361–370CrossRefGoogle Scholar
  3. Buren TV, Whalen E, Amitay M (2014a) Vortex formation of a finite-span synthetic jet: high Reynolds number. Phys Fluids 26(1):014101CrossRefGoogle Scholar
  4. Buren TV, Whalen E, Amitay M (2014b) Vortex formation of a finite-span synthetic jet: effect of rectangular orifice geometry. J Fluid Mech 745:180–207CrossRefGoogle Scholar
  5. Cannelle F, Amitay M (2007) Transitory behavior of a finite span synthetic jets. Phys Fluids 19(9):094108CrossRefzbMATHGoogle Scholar
  6. Cater JE, Soria J (2002) The evolution of round zero-net-mass-flux jets. J Fluid Mech 472:167–200CrossRefzbMATHGoogle Scholar
  7. Di Cicca GM, Iuso G (2007) On the near field of an axisymmetric synthetic jet. Fluid Dyn Res 39(9):673–693CrossRefzbMATHGoogle Scholar
  8. Feng LH, Wang JJ (2010) Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J Fluid Mech 662:232–259CrossRefzbMATHGoogle Scholar
  9. Glezer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34(1):503–529MathSciNetCrossRefzbMATHGoogle Scholar
  10. Grinstein FF (1995) Self-induced vortex ring dynamics in subsonic rectangular jets. Phys Fluids 7(10):2519–2521MathSciNetCrossRefGoogle Scholar
  11. Grinstein FF (2001) Vortex dynamics and entrainment in rectangular free jets. J Fluid Mech 437:69–101CrossRefzbMATHGoogle Scholar
  12. Gutmark EJ, Grinstein FF (1999) Flow control with noncircular jets. Annu Rev Fluid Mech 31(1):239–272CrossRefGoogle Scholar
  13. Ho CM, Gutmark EJ (1987) Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J Fluid Mech 179:383–405CrossRefGoogle Scholar
  14. Hong G (2012) Numerical investigation to forcing frequency and amplitude of synthetic jet actuators. AIAA J 50(4):788–796CrossRefGoogle Scholar
  15. Hussain F, Husain HS (1989) Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J Fluid Mech 208:257–320CrossRefGoogle Scholar
  16. Kotapati RB, Mittal R, Cattafesta LN III (2007) Numerical study of a transitional synthetic jet in quiescent external flow. J Fluid Mech 581:287–321CrossRefzbMATHGoogle Scholar
  17. Shuster JM, Smith DR (2007) Experimental study of the formation and scaling of a round synthetic jet. Phys Fluid 19(4):045109CrossRefzbMATHGoogle Scholar
  18. Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10(9):2281–2297MathSciNetCrossRefzbMATHGoogle Scholar
  19. Smith BL, Swift GW (2003) A comparison between synthetic jets and continuous jets. Exp Fluids 34(4):467–472CrossRefGoogle Scholar
  20. Toyoda K, Hiramoto R (2009) Manipulation of vortex rings for flow control. Fluid Dyn Res 41(5):051402CrossRefzbMATHGoogle Scholar
  21. Xia QF, Zhong S (2012) An experimental study on the behaviors of circular synthetic jets at low Reynolds number. Proc Inst Mech Eng Part C 226(11):2686–2700CrossRefGoogle Scholar
  22. Xia QF, Zhong S (2014) Enhancement of laminar flow mixing using a pair of staggered lateral synthetic jets. Sens Actuators A 207:75–83CrossRefGoogle Scholar
  23. Zaman KBMQ (1996) Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. J Fluid Mech 316:1–27CrossRefGoogle Scholar
  24. Zhang PF, Wang JJ, Feng LH (2008) Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Ser E 51(9):1315–1344CrossRefGoogle Scholar
  25. Zhong S, Jabbal M, Tang H et al (2007) Towards the design of synthetic-jet actuators for full-scale flight conditions part 1: the fluid mechanics of synthetic-jet actuators. Flow Turbul Combust 78(3–4):283–307CrossRefzbMATHGoogle Scholar

Copyright information

© The Visualization Society of Japan 2017

Authors and Affiliations

  1. 1.Fluid Mechanics Key Laboratory of Education MinistryBeijing University of Aeronautics and AstronauticsBeijingChina
  2. 2.Shenyang Aircraft Design and Research InstituteShenyangChina

Personalised recommendations