Journal of Visualization

, Volume 20, Issue 1, pp 97–110 | Cite as

Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges

  • Adam D. Wexler
  • Sandra Drusová
  • Elmar C. Fuchs
  • Jakob Woisetschläger
  • Gert Reiter
  • Michael Fuchsjäger
  • Ursula Reiter
Regular Paper

Abstract

Abstract

Here, we report on the feasibility and use of magnetic resonance imaging-based methods to the study of electrohydrodynamic (EHD) liquid bridges. High-speed tomographic recordings through the longitudinal axis of water bridges were used to characterize the mass transfer dynamics, mixing, and flow structure. By filling one beaker with heavy water and the other with light water, it was possible to track the spread of the proton signal throughout the total liquid volume. The mixing kinetics are different depending on where the light nuclei are located and proceeds faster when the anolyte is light water. Distinct flow and mixing regions are identified in the fluid volumes, and it is shown that the EHD flow at the electrodes can be counteracted by the density difference between water isotopes. MR phase contrast imaging reveals that within the bridge section, two separate counter-propagating flows pass one above the other in the bridge.

Graphical Abstract

Keywords

Floating water bridge Electrohydrodynamic flow Magnetic resonance imaging Water isotope mixing 

Notes

Acknowledgments

This work was performed in the cooperation framework of Wetsus, European Center of Excellence for Sustainable Water Technology (http://www.wetsus.eu). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the Province of Fryslân, and the Northern Netherlands Provinces. ADW, SD, ECF, and JW wish to thank the participants of the research theme Applied Water Physics for the fruitful discussions and their financial support.

Supplementary material

12650_2016_379_MOESM1_ESM.mp4 (36.5 mb)
Supplementary material 1 (MP4 37349 kb)

References

  1. Benson MJ, Elkins CJ, Mobley PD, Alley MT, Eaton JK (2009) Three-dimensional concentration field measurements in a mixing layer using magnetic resonance imaging. Exp Fluids 49:43–55. doi:10.1007/s00348-009-0763-x CrossRefGoogle Scholar
  2. Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, AmsterdamGoogle Scholar
  3. Burcham CL, Saville DA (2002) Electrohydrodynamic stability: Taylor–Melcher theory for a liquid bridge suspended in a dielectric gas. J Fluid Mech 452:163–187. doi:10.1017/S0022112001006784 CrossRefMATHGoogle Scholar
  4. Engel A, Friedrichs R (2002) On the electromagnetic force on a polarizable body. Am J Phys 70:428. doi:10.1119/1.1432971 CrossRefGoogle Scholar
  5. Fuchs EC, Woisetschläger J, Gatterer K, Maier E, Pecnik R, Holler G, Eisenkölbl H (2007) The floating water bridge. J Phys D Appl Phys 40:6112–6114. doi:10.1088/0022-3727/40/19/052 CrossRefGoogle Scholar
  6. Fuchs EC, Gatterer K, Holler G, Woisetschläger J (2008) Dynamics of the floating water bridge. J Phys D Appl Phys 41:185502. doi:10.1088/0022-3727/41/18/185502 CrossRefGoogle Scholar
  7. Fuchs EC, Bitschnau B, Di Fonzo S, Gessini A, Woisetschläger Bencivenga F (2011) Inelastic UV scattering in a floating water bridge. J Phys Sci Appl 1:135–147Google Scholar
  8. Graessner J (2013) Bandwidth in MRI? MAGNETOM Flash, 2:3–8. http://www.siemens.com/magnetom-world
  9. Grundmann S, Wassermann F, Lorenz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flows. Int J Heat Fluid Flow 37:51–63. doi:10.1016/j.ijheatfluidflow.2012.05.003 CrossRefGoogle Scholar
  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging—physical principles and sequence design. Wiley, New YorkGoogle Scholar
  11. Marín AG, Lohse D (2010) Building water bridges in air: electrohydrodynamics of the floating water bridge. Phys Fluids 22:122104. doi:10.1063/1.3518463 CrossRefGoogle Scholar
  12. Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1:111–146. doi:10.1146/annurev.fl.01.010169.000551 CrossRefGoogle Scholar
  13. Morawetz K (2012) Theory of water and charged liquid bridges. Phys Rev E Stat Nonlinear Soft Matter Phys 86:1–9. doi:10.1103/PhysRevE.86.026302 Google Scholar
  14. Narten A (1964) Thermodynamic effects of mixing light and heavy water. J Chem Phys 41:1318. doi:10.1063/1.1726066 CrossRefGoogle Scholar
  15. Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533CrossRefGoogle Scholar
  16. Reike V, Pauly KB (2008) MR Thermometry. J Magn Res Imag 27:376–390. doi:10.1002/jmri.21265 CrossRefGoogle Scholar
  17. Reiter U, Reiter G, Kovacs G, Stadler AF, Gulsun MA, Greiser A, Olschewski H, Fuchsjäger M (2013) Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PLoS One 8:e82212. doi:10.1371/journal.pone.0082212 CrossRefGoogle Scholar
  18. Sammer M, Wexler A, Kuntke P, Wiltsche H, Stanulewicz N, Lankmayr E, Woisetschläger J, Fuchs EC (2015) Proton production, neutralisation and reduction in a floating water bridge. J Phys D Appl Phys 48:415501. doi:10.1088/0022-3727/48/41/415501 CrossRefGoogle Scholar
  19. Smith JN, Flagan RC, Beauchamp JL (2002) Droplet evaporation and discharge dynamics in electrospray ionization. J Phys Chem A 106:9957–9967. doi:10.1021/jp025723e CrossRefGoogle Scholar
  20. Van De Meent JW, Sederman AJ, Gladden LF, Goldstein RE (2010) Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J Fluid Mech 642:5. doi:10.1017/S0022112009992187 CrossRefMATHGoogle Scholar
  21. Wang F-N, Peng S-L, Lu C-T, Peng H-H, Yeh T-C (2013) Water signal attenuation by D2O infusion as a novel contrast mechanism for 1H perfusion MRI. NMR Biomed 26:692–698. doi:10.1002/nbm.2914 CrossRefGoogle Scholar
  22. Wassermann F, Loosmann F, Egger H, Grundmann S, Tropea C (2014) Flow through tetradecahedrons. Paper presented at the 17th international symposium on applications of laser techniques to fluid mechanics Lisbon, Portugal, 07–10 July, 2014Google Scholar
  23. Weishaupt D, Köchli VD, Marincek B (2008) How does MRI work?: an introduction to the physics and function of magnetic resonance imaging. Springer, BerlinGoogle Scholar
  24. Wexler AD, López Sáenz M, Schreer O, Woisetschläger J, Fuchs EC (2014) The preparation of electrohydrodynamic bridges from polar dielectric liquids. J Vis Exp. doi:10.3791/51819 Google Scholar
  25. Wexler AD, Drusová S, Woisetschläger J, Fuchs EC (2016) Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field. Phys Chem Chem Phys 18:16281. doi:10.1039/c5cp07218b CrossRefGoogle Scholar
  26. Widom A, Swain J, Silverberg J, Sivasubramanian S, Srivastava YN (2009) Theory of the Maxwell pressure tensor and the tension in a water bridge. Phys Rev E 80:016301. doi:10.1103/PhysRevE.80.016301 CrossRefGoogle Scholar
  27. Woisetschläger J, Gatterer K, Fuchs EC (2010) Experiments in a floating water bridge. Exp Fluids 48:121–131. doi:10.1007/s00348-009-0718-2 CrossRefGoogle Scholar
  28. Woisetschläger J, Wexler AD, Holler G, Eisenhut M, Gatterer K, Fuchs EC (2012) Horizontal bridges in polar dielectric liquids. Exp Fluids 52:193–205CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  1. 1.Applied Water PhysicsWetsus European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
  2. 2.Institute for Thermal Turbomachinery and Machine Dynamics, Working Group Metrology-Laser Optical MetrologyTechnical University of GrazGrazAustria
  3. 3.Siemens AG HealthcareGrazAustria
  4. 4.Division of General Radiology, Department of RadiologyMedical University of GrazGrazAustria

Personalised recommendations