Advertisement

Journal of Visualization

, Volume 20, Issue 3, pp 417–432 | Cite as

The Graph Landscape: using visual analytics for graph set analysis

  • Andrew Kennedy
  • Karsten Klein
  • An Nguyen
  • Florence Ying Wang
Regular Paper

Abstract

In a variety of research and application areas, graphs are an important structure for data modeling and analysis. While graph properties can have a crucial influence on the performance of graph algorithms, and thus on the outcome of experiments, often only basic analysis of the graphs under investigation in an experimental evaluation is performed and a few characteristics are reported in publications. We present Graph Landscape, a concept for the visual analysis of graph set properties. The Graph Landscape aims to support researchers to explore graphs and graph sets regarding their properties, to allow to select good experimental test sets, analyze newly generated sets, compare sets and assess the validity (or range) of experimental results and corresponding conclusions.

Graphical Abstract

Graphical Abstract text

Keywords

Graphs Multidimensional data Visualization Analysis 

Notes

Acknowledgments

We gratefully acknowledge the support of the Australian Research Council through Discovery Project Grant DP140100077. We also thank Peter Eades for fruitful discussions and his advice on and support of the project. Some of the work has been done while K. Klein was with the University of Sydney.

References

  1. Bachmaier C, Brandenburg FJ, Effinger P, Gutwenger C, Katajainen J, Klein K, Spönemann M, Stegmaier M, Wybrow M (2012) The open graph archive: a community-driven effort. In: Graph drawing. Springer, Berlin, pp 435–440Google Scholar
  2. Batagelj V (2009) Social network analysis, large-scale. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 8245–8265CrossRefGoogle Scholar
  3. Chimani M, Klein K (2010) Algorithm engineering: concepts and practice. Experimental methods for the analysis of optimization algorithms. Springer, Berlin, pp 131–158CrossRefGoogle Scholar
  4. Chimani M, Gutwenger C, Jünger M, Klau GW, Klein K, Mutzel P (2013) The open graph drawing framework (OGDF). In: Tamassia R (ed) Handbook on graph drawing and visualization. Chapman and Hall/CRC, Boca Raton, pp 543–569Google Scholar
  5. Dionísio A, Menezes R, Mendes DA (2006) Entropy-based independence test. Nonlinear Dyn 44(1–4):351–357CrossRefzbMATHGoogle Scholar
  6. Doncheva NT, Assenov Y, Domingues FS, Albrecht M (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7(4):670–685CrossRefGoogle Scholar
  7. Dzemyda G, Marcinkevicius V, Medvedev V (2011) Large-scale multidimensional data visualization: a web service for data mining. In: Abramowicz W, Llorente IM, Surridge M, Zisman A, Vayssière J (eds) Proceedings of ServiceWave 2011. LNCS, vol 6994, pp 14–25. Springer, BerlinGoogle Scholar
  8. Gansner ER, Hu Y, North SC (2013) A maxent-stress model for graph layout. IEEE Trans Vis Comput Graph 19(6):927–940CrossRefGoogle Scholar
  9. Hakes L, Pinney JW, Robertson DL, Lovell SC (2008) Protein-protein interaction networks and biology—what’s the connection? Nat Biotechnol 26(1):69–72CrossRefGoogle Scholar
  10. Hartigan J (1975) Printer graphics for clustering. J Stat Comput Simul 4(3):187–213CrossRefzbMATHGoogle Scholar
  11. Heinrich J, Weiskopf D (2013) State of the art of parallel coordinates. In: Eurographics 2013-state of the art reports, pp 95–116. The Eurographics AssociationGoogle Scholar
  12. Huang T, Huang ML, Nguyen QV, Zhao L (2014) A space-filling multidimensional visualization (SFMDVis) for exploratory data analysis. In: Bednarz T, Huang W, Nguyen QV, Wu Y (eds) The 7th international symposium on visual information communication and interaction, VINCI ’14, Sydney, NSW, Australia, August 5–8, 2014, p 19. ACM, New YorkGoogle Scholar
  13. Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1(2):69–91MathSciNetCrossRefzbMATHGoogle Scholar
  14. Kairam S, MacLean D, Savva M, Heer J (2012) Graphprism: compact visualization of network structure. In: Proceedings of the international working conference on advanced visual interfaces, AVI ’12, New York, NY. USA. ACM, New York, pp 498–505Google Scholar
  15. Kaski S, Venna J, Kohonen T (1999) Coloring that reveals high-dimensional structures in data. In: 6th international conference on neural information processing, 1999. Proceedings. ICONIP ’99, vol 2, pp 729–734Google Scholar
  16. Kennedy A, Klein K, Nguyen A (2015) The graph landscape—a concept for the visual analysis of graph set properties. In: The 8th international symposium on visual information communication and interaction, VINCIGoogle Scholar
  17. Klimenta M, Brandes U (2012) Graph drawing by classical multidimensional scaling: new perspectives. In: Didimo W, Patrignani M (eds) Proceedings of GD 2012, revised selected papers. LNCS, vol 7704. Springer, Berlin, pp 55–66Google Scholar
  18. Kobourov SG (2013) Force-directed drawing algorithms. In: Handb Graph Draw Vis. Chapman and Hall/CRC, pp 383–408 Google Scholar
  19. Kohonen T (1998) The self-organizing map. Neurocomputing 21(1):1–6CrossRefzbMATHGoogle Scholar
  20. Nguyen QV, Zhang K, Simoff S (2015) Unlocking the complexity of port data with visualization. IEEE Trans Hum Mach Syst 45(2):272–279CrossRefGoogle Scholar
  21. Nhon DT, Wilkinson L (2014) Scagexplorer: exploring scatterplots by their scagnostics. In: Fujishiro I, Brandes U, Hagen H, Takahashi S (eds) IEEE PacificVis 2014. IEEE, pp 73–80Google Scholar
  22. Nohno K, Wu H-Y, Watanabe K, Takahashi S, Fujishiro I (2014) Spectral-based contractible parallel coordinates. In: 2014 18th international conference on information visualisation (IV), July 2014, pp 7–12Google Scholar
  23. Pagliosa P, Paulovich FV, Minghim R, Levkowitz H, Nonato LG (2015) Projection inspector: assessment and synthesis of multidimensional projections. Neurocomputing 150(Part B(0)):599–610Google Scholar
  24. Panagiotidis A, Burch M, Deussen O, Weiskopf D, Ertl T (2014) Graph exploration by multiple linked metric views. In: 2014 18th international conference on information visualisation (IV). IEEE, pp 19–26Google Scholar
  25. Pérez D, Zhang L, Schaefer M, Schreck T, Keim D, Díaz I (2015) Interactive feature space extension for multidimensional data projection. Neurocomputing 150:611–626CrossRefGoogle Scholar
  26. Purchase HC, Hamer J, Nöllenburg M, Kobourov SG (2012) On the usability of Lombardi graph drawings. In: Proceedings of GD 2012. LNCS, vol 7704. Springer, Berlin, pp 451–462Google Scholar
  27. Silvestro LD, Burch M, Caccamo M, Weiskopf D, Beck F, Gallo G (2014) Visual analysis of time-dependent multivariate data from dairy farming industry. In: Laramee RS, Kerren A, Braz J (eds) Proceedings of IVAPP 2014. SciTePress, pp 99–106Google Scholar
  28. Suematsu H, Zheng Y, Itoh T, Fujimaki R, Morinaga S, Kawahara Y (2013) Arrangement of low-dimensional parallel coordinate plots for high-dimensional data visualization. In: Proceedings of IV 2013, pp 59–65Google Scholar
  29. ten Caat M, Maurits NM, Roerdink JBTM (2005) Tiled parallel coordinates for the visualization of time-varying multichannel EEG data. In: Brodlie K, Duke DJ, Joy KI (eds) EuroVis05: joint Eurographics—IEEE VGTC symposium on visualization, Leeds, United Kingdom, 1–3 June 2005. Eurographics Association, pp 61–68Google Scholar
  30. Torgerson WS (1952) Multidimensional scaling: I. Theory and method. Psychometrika 30(17):401–419MathSciNetCrossRefzbMATHGoogle Scholar
  31. Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2):111–126CrossRefzbMATHGoogle Scholar
  32. Wakita K, Masanori T, Hosobe H (2015) Interactive high-dimensional visualization of social graphs. In: Liu S, Scheuermann G, Takahashi S (eds) IEEE PacificVis 2015. IEEE, pp 303–310Google Scholar
  33. Wang Y (Florence), Takatuska M (2013) Enhancing SOM based visualization methods for better data navigation. In: Lee M, Hirose A, Hou Z-G, Kil R (eds) Neural information processing. Lecture notes in computer science, vol 8227, pp 496–503. Springer, BerlinGoogle Scholar
  34. Xu K, Ivona B, Leonid B, Soojin VY (2011) Path lengths in protein-protein interaction networks and biological complexity. Proteomics 11:1857–1867CrossRefGoogle Scholar
  35. Zheng Y, Suematsu H, Itoh T, Fujimaki R, Morinaga S, Kawahara Y (2015) Scatterplot layout for high-dimensional data visualization. J Vis 18(1):111–119CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  1. 1.The University of SydneySydneyAustralia
  2. 2.Monash UniversityMelbourneAustralia
  3. 3.CSIROMelbourneAustralia

Personalised recommendations