Journal of Visualization

, Volume 19, Issue 4, pp 811–821 | Cite as

Exploring OD patterns of interested region based on taxi trajectories

  • Min Lu
  • Jie Liang
  • Zuchao Wang
  • Xiaoru YuanEmail author
Regular Paper


Traffics of different regions in a city have different Origin-Destination (OD) patterns, which potentially reveal the surrounding traffic context and social functions. In this work, we present a visual analysis system to explore OD patterns of interested regions based on taxi trajectories. The system integrates interactive trajectory filtering with visual OD patterns exploration. Trajectories related to interested region are selected by a suite of graphical filtering tools, from which OD clusters are detected automatically. OD traffic patterns can be explored at two levels: overview of OD and detailed exploration on dynamic OD patterns, including information of dynamic traffic volume and travel time. By testing on real taxi trajectory data sets, we demonstrate the effectiveness of our system.

Graphical Abstract


Urban Visualization OD pattern Trajectory Filtering  



The authors wish to thank the anonymous reviewers for their valuable comments. This work is supported by NSFC No. 61170204. This work is also partially supported by NSFC Key Project No. 61232012 and the National Program on Key Basic Research Project (973 Program) No. 2015CB352500. This work is also funded by PKU-Qihoo Joint Data Visual Analytics Research Center.


  1. Andrienko G, Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements. In: IEEE symposium on visual analytics science and technology, pp 51–58Google Scholar
  2. Andrienko N, Andrienko G (2011) Spatial generalization and aggregation of massive movement data. IEEE Trans Vis Comput Graph 17(2):205–219CrossRefGoogle Scholar
  3. Aufaure-Portier MA., Bonhomme C (1999) A high level visual language for spatial data management. In: Proceedings of the third International Conference on Visual Information Systems, Amsterdam, The Netherlands, 2-4 June. pp 325–332Google Scholar
  4. Beijing Transportation Research Center (2010) Annual report of beijing transportation developmentGoogle Scholar
  5. Boyandin I, Bertini E, Bak P, Lalanne D (2011) Flowstrates: an approach for visual exploration of temporal origin-destination data. Comput Graph Forum 30(3):971–980CrossRefGoogle Scholar
  6. Ferreira N, Poco J, Vo H, Freire J, Silva C (2013) Visual exploration of big spatio-temporal urban data: a study of new york city cab trips. IEEE Trans Vis Comput Graph 19(12):2149–2158CrossRefGoogle Scholar
  7. Fishkin K, Stone MC (1995) Enhanced dynamic queries via movable filters. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 415–420Google Scholar
  8. Graham RL (1972) An efficient algorithm for determining the convex hull of a finite planar set. Inf Process Lett 1:132–133zbMATHCrossRefGoogle Scholar
  9. Guo D (2009) Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans Vis Comput Graph 15(6):1041–1048CrossRefGoogle Scholar
  10. Guo H, Wang Z, Yu B, Zhao H, Yuan X (2011) Tripvista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: Proceedings of IEEE pacific visualization symposium, Hong Kong, pp 163–170Google Scholar
  11. Havre S, Hetzler B, Nowell L (2000) Themeriver: visualizing theme changes over time, In: Proceedings of IEEE Symposium on Information Visualization 2000. pp 115–123Google Scholar
  12. Hochheiser H, Shneiderman B (2004) Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Information Visualization 3(1):1–18CrossRefGoogle Scholar
  13. Holten D, van Wijk J (2009) Force-directed edge bundling for graph visualization. Comput Graph Forum 28(3):983–990CrossRefGoogle Scholar
  14. Jiang X, Zheng C, Tian Y, Liang R (2015) Large-scale taxi o/d visual analytics for understanding metropolitan human movement patterns. J Vis 18(2):185–200CrossRefGoogle Scholar
  15. Krüger R, Thom D, Wörner M, Bosch H, Ertl T (2013) Trajectorylenses—a set-based filtering and exploration technique for long-term trajectory data. Comput Graph Forum 32(3):451–460CrossRefGoogle Scholar
  16. Liu H, Gao Y, Lu L, Liu S, Qu H, Ni L (2011a) Visual analysis of route diversity. In: IEEE conference on visual analytics science and technology (VAST), pp 171–180Google Scholar
  17. Liu W, Zheng Y, Chawla S, Yuan J, Xing X (2011b) Discovering spatio-temporal causal interactions in traffic data streams. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1010–1018Google Scholar
  18. Lu M, Lai C, Ye T, Liang J, Yuan X (2015a) Visual analysis of route choice behaviour based on gps trajectories. In: The 4th international workshop on urban computing (Held in conjunction with the 21th ACM SIGKDD 2015), August 10, SydneyGoogle Scholar
  19. Lu M, Wang Z, Liang J, Yuan X (2015b) OD-Wheel: visual design to explore od patterns of a central region. In: Proceedings of IEEE pacific visualization symposium (PacificVis 2015 Notes), April 14–17, Hangzhou, pp 14–17Google Scholar
  20. Lu M, Wang Z, Yuan X (2015c) Trajrank: exploring travel behaviour on a route by trajectory ranking. In: Proceedings of IEEE pacific visualization symposium, April 14–17, Hangzhou, pp 311–318Google Scholar
  21. McLachlan P, Munzner T, Koutsofios E, North S (2008) Liverac: interactive visual exploration of system management time-series data. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 1483–1492Google Scholar
  22. Pan G, Qi G, Wu Z, Zhang D, Li S (2013) Land-use classification using taxi gps traces. IEEE Trans Intell Transp Syst 14(1):113–123CrossRefGoogle Scholar
  23. Peng C, Jin X, Wong K-C, Shi M, Li P (2012) Collective human mobility pattern from taxi trips in urban area. PLoS One 7(4):e34487CrossRefGoogle Scholar
  24. Phan D, Xiao L, Yeh R, Hanrahan P (2005) Flow map layout. In: IEEE symposium on information visualization, pp 219–224Google Scholar
  25. Rae A (2009) From spatial interaction data to spatial interaction information? Geovisualisation and spatial structures of migration from the 2001 UK census. Comput Environ Urban Syst 33(3):161–178MathSciNetCrossRefGoogle Scholar
  26. Robertson G, Fernandez R, Fisher D, Lee B, Stasko J (2008) Effectiveness of animation in trend visualization. IEEE Trans Vis Comput Graph 14(6):1325–1332CrossRefGoogle Scholar
  27. Thompson W, Lavin S (1996) Automatic generation of animated migration maps. Cartogr Int J Geogr Inf Geovisualization 33:17–28CrossRefGoogle Scholar
  28. van Wijk J,van Selow E (1999) Cluster and calendar based visualization of time series data. In: IEEE symposium on information visualization, pp 4 –9Google Scholar
  29. Wang Z, Lu M, Yuan X, Zhang J, van de Wetering H (2013) Visual traffic jam analysis based on trajectory data. IEEE Trans Vis Comput Graph 19(12):2159–2168CrossRefGoogle Scholar
  30. Wang Z, Ye T, Lu M, Yuan X, Qu H, Yuan J, Wu Q (2014) Visual exploration of sparse traffic trajectory data. IEEE Trans Vis Comput Graph 20(12):1813–1822CrossRefGoogle Scholar
  31. Wang Z, Yuan X (2014) Urban trajectory timeline visualization. In: Proceedings of 2014 international conference on big data and smart computing (BIGCOMP), Bangkok, pp 15–17Google Scholar
  32. Wang Z, Yuan X, Ye T, Hao Y, Chen S, Liang J, Li Q, Wang H, Wu Y (2015) Visual data quality analysis for taxi gps data. In: IEEE VIS (Poster), ChicagoGoogle Scholar
  33. Weber M, Alexa M, Muller W (2001) Visualizing time-series on spirals. In: IEEE symposium on information visualization, pp 7 –13Google Scholar
  34. Wood J, Dykes J, Slingsby A (2010) Visualization of origins, destinations and flows with OD maps. Cartogr J 47:117–129CrossRefGoogle Scholar
  35. Zhao J, Chevalier F, Balakrishnan R (2011) Kronominer: using multi-foci navigation for the visual exploration of time-series data. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 1737–1746Google Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  1. 1.Key Laboratory of Machine Perception (Ministry of Education), and School of EECSPeking University BeijingChina
  2. 2.Qihoo 360 Technology Co. Ltd.BeijingChina

Personalised recommendations