Journal of Visualization

, Volume 19, Issue 3, pp 461–474 | Cite as

Visual analytics of smogs in China

  • Jie Li
  • Zhao Xiao
  • Han-Qing Zhao
  • Zhao-Peng Meng
  • Kang Zhang
Regular Paper

Abstract

Smog is one of the most important environmental problems in China. Scientists have attempted to explain the causes from chemistry, physics, atmosphere and other perspectives. Many meteorologists believe that meteorology is a crucial reason. In this paper we present a new multi-view approach to visual analytics of the recent smog problems in China. This approach integrates four interrelated visualizations, each specialized in a different analysis task. To reveal the relationship between smog and meteorological attributes, we design a Correlation Detection View that simultaneously visualizes the air quality change patterns across multiple cities and related meteorological attributes. Component Trend View is used to show the variation patterns of six air components, while Aggregation View can reveal the regional overall pollution situations. A case study has been conducted using the China Air Quality Observation Data and European Centre for Medium-Range Weather Forecasts re-analysis data to verify the effectiveness of the proposed approach. By visually analyzing the meteorological data of Beijing and other major cities, we have found several interesting patterns, which prove the validity of our work in identifying sources of smog.

Graphical abstract

Keywords

Smog Spatiotemporal visualization Meteorological visualization Visual analytics 

References

  1. Brewer CA, Harrower MA (2009) ColorBrewer 2.0: color advice for cartography. Penn State University. http://colorbrewer2.org/
  2. Chen R, Zhao Z, Kan H (2013) Heavy smog and hospital visits in Beijing, China. Am J Respir Crit Care Med 188(9):1170–1171CrossRefGoogle Scholar
  3. Chen J, Chen H, Zhang G, Pan JZ, Wu H, Zhang N (2014) Big smog meets web science: smog disaster analysis based on social media and device data on the web. In: Proceedings of the companion publication of the 23rd international conference on world wide web, pp 505–510Google Scholar
  4. Havre S, Hetzler B, Nowell L (2000) Themeriver: Visualizing theme changes over time. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis’00), pp 115–123Google Scholar
  5. Havre S, Hetzler E, Whitney P, Nowell L (2002) ThemeRiver: visualizing thematic changes in large document collections. IEEE Trans Vis Comput Graph 8(1):9–20CrossRefGoogle Scholar
  6. Hulek R, Jarkovsky J, Boruvkova J, Kalina J, Gregor J., Sebkova K, Schwarz D, Klanova J, Dusek L (2013) Global monitoring plan of the Stockholm convention on persistent organic pollutants: visualization and on-line analysis of data from the monitoring reports. http://www.pops-gmp.org/visualization/
  7. Janicke H, Bottinger M, Mikolajewicz U, Mikolajewicz U (2009) Visual exploration of climate variability changes using wavelet analysis. IEEE Trans Vis Comput Graph 15(6):1375–1382CrossRefGoogle Scholar
  8. Johansson S and Jern M (2007) GeoAnalytics visual inquiry and filtering tools in parallel coordinates plots. In: Proceedings of the 15th annual ACM international symposium on advances in geographic information systemsGoogle Scholar
  9. Johansson J, Neset TS, Linner BO (2010) Evaluating climate visualization: an information visualization approach. In Proceedings of the international conference on information visualization (IV’10), pp 156–161Google Scholar
  10. Landesberge TV, Bremm S, Andrienko N, Andrienko G, Tekusov M (2012) Visual analytics methods for categoric spatio-temporal data. In: Proceedings of the IEEE conference on visual analytics science and technology (VAST’12), pp 183–192Google Scholar
  11. Lee B, Riche NH, Karlson AK, Carpendale S (2010) Sparkclouds: visualizing trends in tag clouds. IEEE Trans Vis Comput Graph 16(6):1182–1189CrossRefGoogle Scholar
  12. Li J, Meng ZP, Zhang K (2014) Visualization of oceanographic applications using a common data model. In: Proceedings of the 2014 ACM symposium on applied computing (SAC’14), pp 933–938Google Scholar
  13. Li J, Zhang K, Meng ZP (2014) Vismate: interactive visual analysis of station-based observation data on climate changes. In: Proceedings of the IEEE conference on visual analytics science and technology (VAST’14), pp 133–142Google Scholar
  14. Ma J, Xu X, Zhao C, Yan P (2012) A review of atmospheric chemistry research in China: photochemical smog, haze pollution, and gas–aerosol interactions. Adv Atmos Sci 29(5):1006–1026CrossRefGoogle Scholar
  15. Malik A, Maciejewskiet R, Jang Y, Huang W (2012) A correlative analysis process in a visual analytics environment. In: Proceedings of the IEEE conference on visual analytics science and technology (VAST’12), pp 33–42Google Scholar
  16. Nguyen DQ, Schumann H (2010) Taggram: exploring geo-data on maps through a tag cloud-based visualization. In Proceedings of the international conference on information visualization (IV’10), pp 322–328Google Scholar
  17. Nocke T, Schumann H, Bohm U (2004) Methods for the visualization of clustered climate data. Comput Stat 19(1):75–94MathSciNetCrossRefMATHGoogle Scholar
  18. Qu H, Chan WY, Xu A, Chung KL, Guo P (2007) Visual analysis of the air pollution problem in Hong Kong. IEEE Trans Vis Comput Graph 13(6):1408–1415CrossRefGoogle Scholar
  19. Sharko J, Grinstein G, Marx KA (2008) Vectorized radviz and its application to multiple cluster datasets. IEEE Trans Vis Comput Graph 14(6):1427–1444CrossRefGoogle Scholar
  20. Slocum TA, Mcmaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geographic visualization, 3rd edn. Pearson Education, LondonGoogle Scholar
  21. Tominski C, Abello J, Schumann H (2004) Axes-based visualizations with radial layouts. In: Proceedings of the 2004 ACM symposium on applied computing (SAC’04), pp 1242–1247Google Scholar
  22. Wang C, Xiao Z, Liu Y, Xu Y, Zhou A, Zhang K (2013) SentiView: sentiment analysis and visualization for internet popular topics. IEEE Trans Hum Mach Syst 43(6):620–630CrossRefGoogle Scholar
  23. Watson DF (1992) Contouring. Pergamon Press, New YorkGoogle Scholar
  24. Yannier N, Basdogan C, Tasiran S, Sen OL (2008) Using haptics to convey cause-and-effect relations in climate visualization. IEEE Trans Vis Comput Graph 1(2):130–141Google Scholar
  25. Zhou W, Cohan DS, Henderson BH (2013) Slower ozone production in Houston, Texas following emission reductions: evidence from Texas air quality studies in 2000 and 2006. Atmos Chem Phys 13(7):19085–19120CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2015

Authors and Affiliations

  • Jie Li
    • 1
  • Zhao Xiao
    • 1
  • Han-Qing Zhao
    • 1
  • Zhao-Peng Meng
    • 1
  • Kang Zhang
    • 2
  1. 1.School of Computer SoftwareTianjin UniversityTianjinChina
  2. 2.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations