Journal of Visualization

, Volume 19, Issue 1, pp 129–139 | Cite as

Interactive visualization of magnetic field for virtual science experiments

Regular Paper
  • 182 Downloads

Abstract

This paper presents a novel application of visualizing 3D magnetic field for virtual science experiments. The magnetic field is visualized as streamlines using view-dependent seed template and occlusion buffer. The template is updated according to the viewpoint/magnet movements and determines 3D seed positions. The occlusion buffer enables us to select a subset of the seeds which do not cause cluttered streamlines. Our method has been designed and implemented through teacher survey. A virtual experiment system is built upon the visualization method. It supports user interactions with magnets and compasses and visualizes the magnetic field at real time. The system was experimented in elementary school science classes. The evaluation results show that our method significantly improved the students’ capabilities of presenting magnetic field.

Keywords

Magnetic field visualization Virtual experiment Elementary school science subjects 

Notes

Acknowledgments

This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2015.

References

  1. Algodoo (2014) Algodoo. http://www.algodoo.com/
  2. Avison JH (1999) Physics for CXC. Nelson Thornes Limited, URL http://books.google.co.kr/books?id=oCtw-LWBdP4C
  3. Bachthaler S, Sadlo F, Weeber R, Kantorovich S, Holm C, Weiskopf D (2012) Magnetic flux topology of 2d point dipoles. Comput Graph Forum 31(3pt1):955–964CrossRefGoogle Scholar
  4. eduMedia (2013) eduMedia. http://www.edumedia-sciences.com/
  5. ExploreLearning (2014) ExploreLearning. http://www.explorelearning.com/
  6. Günther T, Rössl C, Theisel H (2013) Opacity optimization for 3D line fields. ACM Trans Graph 32(4):120:1–120:8Google Scholar
  7. Hafner M, Schöning M, Antczak M, Demenko A, Hameyer K (2010) Methods for computation and visualization of magnetic flux lines in 3-d. IEEE Trans Magn 46(8):3349–3352CrossRefGoogle Scholar
  8. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York. http://cdsweb.cern.ch/record/490457
  9. Klein T, Ertl T (2004) Illustrating magnetic field lines using a discrete particle model. In: VMV’04, pp 387–394Google Scholar
  10. Li L, Shen HW (2007) Image-based streamline generation and rendering. IEEE Trans Vis Comput Graph 13(3):630–640CrossRefGoogle Scholar
  11. Marchesin S, Chen CK, Ho C, Ma KL (2010) View-dependent streamlines for 3d vector fields. IEEE Trans Vis Comput Graph 16(6):1578–1586CrossRefGoogle Scholar
  12. Mattausch O, Theul T, Hauser H, Grller E (2003) Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines. In: Proceedings of the 19th spring conference on Computer graphics, ACM, New York, NY, USA, SCCG ’03, pp 213–222Google Scholar
  13. McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Comput Graph Forum 29(6):1807–1829CrossRefGoogle Scholar
  14. NHMFL (2013) National High Magnetic Field Laboratory. http://www.magnet.fsu.edu/education/tutorials/java
  15. NTNUJAVA (2014) NTNUJAVA Virtual Physics Laboratory. http://www.phy.ntnu.edu.tw/ntnujava/
  16. Okayama E, Cingoski V, Noguchi S, Kaneda K, Yamashita H (2000) Interactive visualization system for education and design in electromagnetics. IEEE Trans Magn 36(4):995–999CrossRefGoogle Scholar
  17. Online Labs (2014) Online Labs. http://www.olabs.co.in/
  18. PhET (2013) PhET. http://phet.colorado.edu/
  19. Physion (2014) Physion. http://physion.net/
  20. Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2003) The state of the art in flow visualisation: Feature extraction and tracking. Comput Graph Forum 22(4):775–792CrossRefGoogle Scholar
  21. Rutten N, van Joolingen WR, van der Veen JT (2012) The learning effects of computer simulations in science education. Comput Educ 58(1):136–153CrossRefGoogle Scholar
  22. Sundquist A (2003) Dynamic line integral convolution for visualizing streamline evolution. IEEE Trans Vis Comput Graph 9(3):273–282CrossRefGoogle Scholar
  23. Thomaszewski B, Gumann A, Pabst S, Straßer W (2008) Magnets in motion. ACM Trans Graph 27(5):162:1–162:9Google Scholar
  24. Trlep M, Hamler A, Jesenik M, Stumberger B (2006) Interactive teaching of electromagnetic field by simultaneous FEM analysis. IEEE Trans Magn 42(4):1479–1482CrossRefGoogle Scholar
  25. Unity (2013) Unity. http://unity3d.com/
  26. Verma V, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. In: Proceedings Visualization 2000. pp 163–170Google Scholar
  27. Yamashita H, Johkoh T, Nakamae E (1992) Interactive visualization of interaction between magnetic flux density and eddy currents in a 3D steady state field. IEEE Trans Magn 28(2):1778–1781CrossRefGoogle Scholar
  28. Ye X, Kao D, Pang A (2005) Strategy for seeding 3D streamlines. In: IEEE Visualization, 2005. VIS 05, pp 471–478Google Scholar

Copyright information

© The Visualization Society of Japan 2015

Authors and Affiliations

  1. 1.Graduate School of Convergence ITKorea UniversitySeoulKorea
  2. 2.Duksung Women’s UniversitySeoulKorea

Personalised recommendations