Journal of Visualization

, Volume 19, Issue 1, pp 115–128 | Cite as

Visualization of 2D unsteady flow using streamline-based concepts in space-time

  • Grzegorz K. Karch
  • Filip Sadlo
  • Daniel Weiskopf
  • Thomas Ertl
Regular Paper

Abstract

Treating time as the third dimension of 2D time-dependent flow enables the application of a wide variety of visualization techniques for 3D stationary vector fields. In the resulting space-time representation, 3D streamlines represent 2D pathlines of the original field. In this paper, we investigate the application of different streamline-based visualization concepts to the 3D space-time representation of 2D time-dependent flow. As a consequence, we obtain from each streamline-based concept a Galilean-invariant counterpart that takes the time dependence of the original field explicitly into account. We show the advantages of the overall approach for vortex analysis and the analysis of the dynamics of material lines. In particular, we employ the concept for the extraction of vortex centers, vortex core regions, and the visualization of material line dynamics using streamsurface integration and line integral convolution in the space-time field. We exemplify the utility of our visualization approach using two 2D time-dependent datasets that exhibit vortical flow.

Graphical Abstract

Keywords

Space-time visualization Galilean invariance Computational visualization 

Mathematics Subject Classification

65S05 

Notes

Acknowledgments

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) and the Collaborative Research Centre SFB-TRR 75 at the University of Stuttgart.

References

  1. Bachthaler S, Sadlo F, Dachsbacher C, Weiskopf D (2012) Space-time visualization of dynamics in Lagrangian coherent structures of time-dependent 2D vector fields. In: Proceedings of International Conference on Information Visualization Theory and Applications, pp 573–583Google Scholar
  2. Cabral B, Leedom LC (1993) Imaging vector fields using line integral convolution. In: Proceedings of ACM SIGGRAPH Computer Graphics and Interactive Techniques, pp 263–270Google Scholar
  3. Chen G, Mischaikow K, Laramee RS, Pilarczyk P, Zhang E (2007) Vector field editing and periodic orbit extraction using morse decomposition. IEEE Trans Vis Comput Graph 13(4):769–785CrossRefGoogle Scholar
  4. Eberly D (1996) Ridges in image and data analysis. Computational Imaging and Vision. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. Esturo JM, Schulze M, Rössl C, Theisel H (2013) Global selection of stream surfaces. Comput Graph Forum 32(2):113–122CrossRefGoogle Scholar
  6. Fuchs R, Peikert R, Hauser H, Sadlo F, Muigg P (2008) Parallel vectors criteria for unsteady flow vortices. IEEE Trans Vis Comput Graph 14(3):615–626CrossRefGoogle Scholar
  7. Fuchs R, Peikert R, Sadlo F, Alsallakh B, Gröller ME (2008) Delocalized unsteady vortex region detectors. In: Proceedings of Vision, Modelling and Visualization, pp 81–90Google Scholar
  8. Gamito MN, Maddock SC (2007) Ray casting implicit fractal surfaces with reduced affine arithmetic. Vis Comput 23(3):155–165CrossRefGoogle Scholar
  9. Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys D 149(4):248–277MathSciNetCrossRefMATHGoogle Scholar
  10. Hlawatsch M, Sadlo F, Hajun J, Weiskopf D (2014) Pathline glyphs. Comput Graph Forum 33(2):497–506CrossRefGoogle Scholar
  11. Hlawatsch M, Sadlo F, Weiskopf D (2011) Hierarchical line integration. IEEE Trans Vis Comput Graph 17(8):1148–1163CrossRefGoogle Scholar
  12. Hlawatsch M, Sadlo F, Weiskopf D (2013) Predictability-based adaptive mouse interaction and zooming for visual flow exploration. Int J Uncertain Quantif 3(3):225–240MathSciNetCrossRefGoogle Scholar
  13. Hultquist JPM (1992) Constructing stream surfaces in steady 3D vector fields. In: Proceedings of IEEE Visualization, pp 171–178Google Scholar
  14. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285(69):69–94MathSciNetCrossRefMATHGoogle Scholar
  15. Jobard B, Lefer W (1997) Creating evenly-spaced streamlines of arbitrary density. In: Visualization in Scientific Computing 97, Eurographics, pp 43–55Google Scholar
  16. Karch GK, Sadlo F, Weiskopf D, Ertl T (2014) Streamline-based concepts for space-time analysis of 2D time-dependent flow. In: Proceedings of the 16th International Symposium on Flow VisualizationGoogle Scholar
  17. Kurzhals K, Weiskopf D (2013) Space-time visual analytics of eye-tracking data for dynamic stimuli. IEEE Trans Vis Comput Graph 12(19):2129–2138CrossRefGoogle Scholar
  18. Laramee RS, Hauser H, Doleisch H, Vrolijk B, Post FH, Weiskopf D (2004) The state of the art in flow visualization: Dense and texture-based techniques. Comput Graph Forum 23(2):203–221CrossRefGoogle Scholar
  19. Levy Y, Degani D, Seginer A (1990) Graphical visualization of vortical flows by means of helicity. AIAA 28(8):1347–1352CrossRefGoogle Scholar
  20. Machado G, Sadlo F, Ertl T (2013) Local extraction of bifurcation lines. In: Proceedings of Vision, Modelling and Visualization, pp 9–16Google Scholar
  21. Mattausch O, Theußl T, Hauser H, Gröller E (2003) Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines. In: Proceedings of 19th Spring Conference on Computer Graphics, pp 213–222Google Scholar
  22. McLoughlin T, Jones M, Laramee R, Malki R, Masters I, Hansen C (2013) Similarity measures for enhancing interactive streamline seeding. IEEE Trans Vis Comput Graph 19(8):1342–1353CrossRefGoogle Scholar
  23. Pagot C, Osmari D, Sadlo F, Weiskopf D, Ertl T, Comba J (2011) Efficient parallel vectors feature extraction from higher-order data. Comput Graph Forum 30(3):751–760CrossRefGoogle Scholar
  24. Peikert R, Roth M (1999) The ‘parallel vectors’ operator - a vector field visualization primitive. In: Proceedings of IEEE Visualization, pp 263–270Google Scholar
  25. Perry AE, Chong MS (1987) A description of eddying motions and flow patterns using critical-point concepts. Ann Rev Fluid Mech 19:125–155CrossRefGoogle Scholar
  26. Roth M (2000) Automatic extraction of vortex core lines and other line-type features for scientific visualization. Ph.D. thesis, ETH Zurich, No. 13673Google Scholar
  27. Sadlo F, Peikert R, Parkinson E (2004) Vorticity based flow analysis and visualization for Pelton turbine design optimization. In: Proceedings of IEEE Visualization, pp 179–186Google Scholar
  28. Sadlo F, Weiskopf D (2010) Time-dependent 2-D vector field topology: an approach inspired by Lagrangian coherent structures. Comput Graph Forum 29(1):88–100CrossRefGoogle Scholar
  29. Sahner J, Weinkauf T, Hege HC (2005) Galilean invariant extraction and iconic representation of vortex core lines. In: Proceedings of Eurographics/IEEE VGTC Symposium on Visualization, pp 151–160Google Scholar
  30. Schafhitzel T, Vollrath JE, Gois JP, Weiskopf D, Castelo A, Ertl T (2008) Topology-preserving lambda\({}_{\rm 2}\)-based vortex core line detection for flow visualization. Comput Graph Forum 27(3):1023–1030CrossRefGoogle Scholar
  31. Sujudi D, Haimes R (1995) Identification of swirling flow in 3D vector fields. In: Proceedings of 12th AIAA Computational Fluid Dynamics Conference, pp 95–1715Google Scholar
  32. Theisel H, Seidel HP (2003) Feature flow fields. In: Proceedings of Eurographics/IEEE VGTC Symposium on Visualization, pp 141–148Google Scholar
  33. Theisel H, Weinkauf T, Hege HC, Seidel HP (2004) Stream line and path line oriented topology for 2D time-dependent vector fields. In: Proceedings of IEEE Visualization, pp 321–328Google Scholar
  34. Turk G, Banks D (1996) Image-guided streamline placement. In: Proceedings of ACM SIGGRAPH Computer Graphics and Interactive Techniques, pp 453–460Google Scholar
  35. Ueng SK, Sikorski C, Ma KL (1996) Efficient streamline, streamribbon, and streamtube constructions on unstructured grids. IEEE Trans Vis Comput Graph 2(2):100–110CrossRefGoogle Scholar
  36. Üffinger M, Sadlo F, Ertl T (2013) A time-dependent vector field topology based on streak surfaces. IEEE Trans Vis Comput Graph 19(3):379–392CrossRefGoogle Scholar
  37. Weinkauf T, Sahner J, Theisel H, Hege HC (2007) Cores of swirling particle motion in unsteady flows. IEEE Trans Vis Comput Graph 13(6):1759–1766CrossRefGoogle Scholar
  38. Weinkauf T, Theisel H, Sorkine O (2012) Cusps of characteristic curves and intersection-aware visualization of path and streak lines. In: Topological Methods in Data Analysis and Visualization II, Mathematics and Visualization. Springer, pp 161–176Google Scholar
  39. Wiebel A, Tricoche X, Schneider D, Jänicke H, Scheuermann G (2007) Generalized streak lines: Analysis and visualization of boundary induced vortices. IEEE Trans Vis Comput Graph 13(6):1735–1742CrossRefGoogle Scholar
  40. Ye X, Kao D, Pang A (2005) Strategy for scalable seeding of 3D streamlines. In: Proceedings of IEEE Visualization, pp 471–478Google Scholar

Copyright information

© The Visualization Society of Japan 2015

Authors and Affiliations

  • Grzegorz K. Karch
    • 1
  • Filip Sadlo
    • 1
  • Daniel Weiskopf
    • 1
  • Thomas Ertl
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations