Journal of Visualization

, Volume 16, Issue 4, pp 263–274 | Cite as

Single camera time-resolved 3D tomographic reconstruction of a pulsed gas jet

  • J. M. Cabaleiro
  • J. L. Aider
  • G. Artana
  • J. E. Wesfreid
Regular Paper


Experimental characterization of micro-jets is challenging because of the small dimensions of the micro-nozzle. In this study, we propose a new technique to visualize the instantaneous 3D structure of a pulsed gas micro-jet. Using phase-averaging of Schlieren visualizations obtained with a high-speed camera and 3D reconstruction through a filtered back projection algorithm, it is possible to follow the high-speed dynamics of the pulsed jet. The experimental technique is illustrated by a 3D reconstruction of a pulsed helium micro-jet. The technique is simple yet very useful. To our knowledge, it is the only experimental method to analyze the instantaneous 3D structure and high frequency dynamics of pulsed micro-jets.

Graphical Abstract


Tomographic reconstruction Micro-jet Schlieren 



This research has been performed with the support of the Bernardo Houssay Program (Ministerio de Ciencia, Tecnología e Innovación Productiva-CONICET, Republica Argentina; Ministère de l’enseignement supérieur et de la recherche, République Française; Ministère des affaires étrangères et européennes) and of the LIA PMF-FMF (French-Argentinian International Associated Laboratory in Physics and Fluid Mechanics) and of the French Agence pour le Développement Et la Maîtrise de l’Energie (ADEME) through the project CARAVAJE.


  1. Arnaud E, Memin E, Sosa R, Artana G (2006) A fluid motion estimator for Schlieren imaging velocimetry. Lect Notes Comput Sci 3951:198–210CrossRefGoogle Scholar
  2. Atcheson B, Ihrke I, Heidrich W, Tevs A, Bradley D, Magnor M, Seidel HP (2008) Time-resolved 3D capture of non-stationary gas flows. ACM Trans Graph 27(5):132CrossRefGoogle Scholar
  3. Aubrun S, McNally J, Alvi F, Kourta A (2011) Separation flow control on a generic ground vehicle using steady microjet arrays. Exp Fluids 51(5):1177–1187. doi: 10.1007/s00348-011-1132-0 CrossRefGoogle Scholar
  4. Castelain T, Sunyach M, Juvé D, Béra JC (2008) Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J 46(5):1081–1087CrossRefGoogle Scholar
  5. Dalziel B, Hughes GO, Sutherland BR (2000) Whole-field density measurements by ‘synthetic Schlieren’. Exp Fluids 28(4):322–335CrossRefGoogle Scholar
  6. Feng J, Okamoto K, Tsuru D, Madarame H, Fumizawa M (2002) Visualization of 3D gas density distribution using optical tomography. ChemEng J 86:243–250Google Scholar
  7. Fermigier M, Guyon E, Jenffer P, Petit L (1980) A direct optical measurement of velocity gradients. Appl Phys Lett 36:361–362CrossRefGoogle Scholar
  8. Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro-free-jet flow. Phys Fluids. doi: 10.1063/1.3224012 (21, 092001)Google Scholar
  9. Goldhahn E, Seume J (2007) The background oriented Schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp Fluids 43:241–249CrossRefGoogle Scholar
  10. Goldhahn E, Alhaj O, Herbst F, Seume J (2009) Quantitative measurements of three dimensional density fields using the background oriented Schlieren technique. Imaging Meas Methods: NNFM 106:135–144CrossRefGoogle Scholar
  11. Goldstein RJ (1996) Fluid mechanics measurements. Taylor & Francis, WashingtonGoogle Scholar
  12. Grinstein FF, Gutmark E, Parr T (1995) Near field dynamics of subsonic free square jets. A computational and experimental study. Phys Fluids 7:1483–1497. doi: 10.1063/1.868534 CrossRefGoogle Scholar
  13. Joseph P, Amandolèse X, Aider JL (2012) Drag reduction on the 25° slant angle Ahmed reference body using pulsed jets. Exp Fluids 52(5):1169–1185. doi: 10.1007/s00348-011-1245-5 CrossRefGoogle Scholar
  14. Joseph P, Amandolèse X, Aider JL (2013) Flow control using MEMS pulsed micro-jets on the Ahmed body. Exp Fluids 54(1):1442. doi: 10.1007/s00348-012-1442-x CrossRefGoogle Scholar
  15. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkMATHGoogle Scholar
  16. Krebs F, Silva F, Sciamarella D, Artana G (2012) A three-dimensional study of the glottal jet. Exp Fluids 52(5):1133–1147. doi: 10.1007/s00348-011-1247-3 CrossRefGoogle Scholar
  17. Lempert W, Boehm M, Jiang N, Gimelshein S, Levin D (2003) Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows. Exp Fluids 34:403–411CrossRefGoogle Scholar
  18. Merzkirch W (1974) Flow visualization. Academic Press Inc., New YorkMATHGoogle Scholar
  19. Moríñigo GH, Quesada JH (2008) Analysis of viscous heating in a micro-rocket flow and performance. J Therm Sci 17(2):116–124CrossRefGoogle Scholar
  20. Oppenheim AV, Schafer RW (1989) Discrete-time signal processing. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  21. Masanori O, Kenta H, Hiroko K, Kazuo M (2011) Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented Schlieren (CGBOS) technique. Meas Sci Technol 22:104011CrossRefGoogle Scholar
  22. Radon J (1917) On the determination of functions from their integrals along certain manifolds. Ber Saechsische Akad Wiss 29:262–277Google Scholar
  23. Settles GS (2001) Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer Verlag, BerlinCrossRefGoogle Scholar
  24. Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS 21:21–43CrossRefGoogle Scholar
  25. Timmerman BH, Watt DW (1995) Tomographic high-speed digital holographic interferometry. Meas Sci Technol 6:1270–1277CrossRefGoogle Scholar
  26. Tropea C, Yarin A, Foss JF (2007) Handbook of experimental fluid mechanics. Springer-Verlag, BerlinCrossRefGoogle Scholar
  27. Vasiliev LA (1971) Schlieren methods. Israel Program for Scientific Translations, New YorkGoogle Scholar
  28. Venkatakrishnan L, Meier GEA (2004) Density measurements using background oriented Schlieren technique. Exp Fluids 37:237–247CrossRefGoogle Scholar
  29. Venkatakrishnan L, Suriyanarayanan P (2009) Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data. Exp Fluids 47:463–473CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2013

Authors and Affiliations

  • J. M. Cabaleiro
    • 1
    • 2
  • J. L. Aider
    • 3
  • G. Artana
    • 1
  • J. E. Wesfreid
    • 3
  1. 1.CONICET-Fluid Dynamics Laboratory, Faculty of EngineeringUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Microfluidics and Plasma LaboratoryMarina Mercante UniversityBuenos AiresArgentina
  3. 3.Laboratoire PMMH, UMR 7636 CNRSUPMC, UPD, ESPCI ParisTechParisFrance

Personalised recommendations