Journal of Visualization

, Volume 16, Issue 2, pp 163–171 | Cite as

Three-dimensional visualization of numerically simulated, present-day global mantle flow

Regular Paper
  • 220 Downloads

Abstract

The behavior of mantle convection plays a primary role in the earth’s dynamic evolution. Numerical simulation of mantle convection is one of the most powerful tools to resolve the thermal and mechanical evolution in the earth’s mantle. The developments in numerical techniques and increases in computational power over the last 10–15 years have facilitated great progress in simulation studies of mantle convection. In addition, with increases in computational resolution, one can expect greater focus on the use of three-dimensional (3D) visualization of mantle convection in gaining a deeper understanding of mantle dynamics. This paper presents simulations of the present-day, instantaneous global mantle flow based on geophysical observations such as seismic tomography models and 3D visualizations of present-day mantle convection. Numerical results are summarized in terms of two aspects of geodynamics: (1) the mixing properties and topological structure of the mantle interior, and (2) the presence of strong mantle upwelling beneath the South Pacific enhanced by the low-viscosity D″ layer.

Graphical abstract

Keywords

Mantle flow Numerical simulation 3D visualization Mixing Superplume D″ layer 

Notes

Acknowledgments

I thank two anonymous reviewers for their careful reading and valuable comments. The calculations presented herein were performed on the supercomputer facilities (SGI Altix ICE X) at JAMSTEC.

References

  1. Chen S, Zhang H, Yuen DA, Zhang S, Zhang J, Shi Y (2008) Volume rendering visualization of 3D spherical mantle convection with an unstructured mesh Vis. Geoscience 13(1):97–104. doi:10.1007/s10069-008-0012-0 Google Scholar
  2. Davies GF (1999) Dynamic Earth: Plates, plumes and mantle convection. Cambridge University Press, Cambridge 460 ppCrossRefGoogle Scholar
  3. Ferrachat S, Ricard Y (1998) Regular vs chaotic mantle mixing. Earth Planet Sci Lett 155(1–2):75–86. doi:10.1016/S0012-821X(97)00200-8 CrossRefGoogle Scholar
  4. Gordon RG, Jurdy DM (1986) Cenozoic global plate motions. J Geophys Res 91(B12):12389–12406. doi:10.1029/JB091iB12p12389 Google Scholar
  5. Gudmundsson O, Sambridge M (1998) A regionalized upper mantle (RUM) seismic model. J Geophys Res 103(B4):7121–7136. doi:10.1029/97JB02488 Google Scholar
  6. Karato S (2008) Deformation of Earth materials: Introduction to the rheology of the solid Earth. Cambridge Univ. Press, UKGoogle Scholar
  7. McNutt MK (1998) Superswells. Rev Geophys 36(2):211–244. doi:10.1029/98RG00255 CrossRefGoogle Scholar
  8. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303(5656):338–343. doi:10.1126/science.1092485 CrossRefGoogle Scholar
  9. Ohno N, Kageyama A (2009) Visualization of spherical data by Yin-Yang grid. Comput Phys Comm 180(9):1534–1538. doi:10.1016/j.cpc.2009.04.008 CrossRefGoogle Scholar
  10. Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH (2011) S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int 184(3):1223–1236. doi:10.1111/j.1365-246X.2010.04884.x CrossRefGoogle Scholar
  11. Schmalzl J, Houseman G, Hansen U (1995) Mixing properties of three-dimensional (3-D) stationary convection. Phys Fluids 7(5):1027–1033. doi:10.1063/1.868614 CrossRefMATHGoogle Scholar
  12. Schmalzl J, Houseman G, Hansen U, (1996) Mixing in vigorous, time-dependent three-dimensional convection and application to Earth’s mantle. J Geophys Res 101(B10):21847–21858. doi:10.1029/96JB01650 Google Scholar
  13. van Keken P, Zhong S (1999) Mixing in a 3D spherical model of present-day mantle convection. Earth Planet Sci Lett 171(4):533–547. doi:10.1016/S0012-821X(99)00181-8 CrossRefGoogle Scholar
  14. Yoshida M, Kageyama A (2004) Application of the Yin-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell. Geophys Res Lett 31(12):L12609. doi:10.1029/2004GL019970 CrossRefGoogle Scholar
  15. Yoshida M (2008a) Core-mantle boundary topography estimated from numerical simulations of instantaneous mantle flow. Geochem Geophys Geosyst 9(7):Q07002. doi:10.1029/2008GC002008
  16. Yoshida M (2008b) Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two?. Geophys Res Lett 35(23):L23302. doi:10.1029/2008GL03605

Copyright information

© The Visualization Society of Japan 2013

Authors and Affiliations

  1. 1.Institute for Research on Earth Evolution (IFREE)Japan Agency for Marine-Earth Science and Technology (JAMSTEC)KanagawaJapan

Personalised recommendations