Advertisement

Journal of Visualization

, Volume 14, Issue 4, pp 371–379 | Cite as

A new SPH fluid simulation method using ellipsoidal kernels

  • Eunchan Jo
  • Doyub Kim
  • Oh-young SongEmail author
Regular Paper

Abstract

We propose a new smoothed particle hydrodynamics simulation method that utilizes ellipsoidal kernels instead of spherical kernels. In order to load fluid quantities between time-stepping into smoothed particles, kernel shapes are elongated according to the directions and magnitudes of velocities. The use of these deformable kernels allows us to efficiently simulate fast moving fluids without increasing computational cost. The experiments demonstrate that our method can reproduce the detailed movement of fast fluids by reducing numerical diffusion.

Graphical Abstract

Keywords

Smoothed particle hydrodynamics Physics-based animation Fluid simulation 

Notes

Acknowledgments

This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Developement Program 2011.

Supplementary material

PDF (90 KB)

PDF (90 KB)

PDF (90 KB)

References

  1. Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. ACM Trans Graph 26(3):48CrossRefGoogle Scholar
  2. Bargteil AW, Goktekin TG, O’brien JF, Strain JA (2006) A semi-lagrangian contouring method for fluid simulation. ACM Trans Graph 25(1):19–38CrossRefGoogle Scholar
  3. Becker M, Teschner M (2007) Weakly compressible sph for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217Google Scholar
  4. Carlson M, Mucha RJ, Turk G (2004) Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph 23(3):377–384CrossRefGoogle Scholar
  5. Chen W, Ren L, Zwicker M, Pfister H (2004) Hardware-accelerated adaptive EWA volume splatting. In: Proceedings of IEEE visualization, pp 67–74Google Scholar
  6. Clavet S, Beaudoin P, Poulin P (2005) Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 219–228Google Scholar
  7. Cummins SJ, Rudman M (1999) An sph projection method. J Comp Phys 152(2):584–607MathSciNetzbMATHCrossRefGoogle Scholar
  8. Desbrun M, Cani MP (1994) Smoothed particles: a new paradigm for highly deformable bodies. In: 6th eurographics workshop on animation and simulationGoogle Scholar
  9. Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph 21(3):736–744CrossRefGoogle Scholar
  10. Fey U, Konig M, Eckelmann H (1998) A new Strouhal Reynolds-number relationship for the circular cylinder in the range 47 < Re < 2 × 105. Phys Fluids 10(7):1547–1549CrossRefGoogle Scholar
  11. Foster N, Fedkiw R (2001) Practical animation of liquids. In: Proceedings of ACM SIGGRAPH 2001. Comput Graph 35:23–30Google Scholar
  12. Foster N, Metaxas D (1996) Realistic animation of liquids. Graph models image process 58(5):471–483CrossRefGoogle Scholar
  13. Foster N, Metaxas D (1997) Controlling fluid animation. In: Computer graphics international 97, pp 178–188Google Scholar
  14. Goktekin TG, Bargteil AW, O’Brien JF (2004) A method for animating viscoelastic fluids. ACM Trans Graph 23(3):463–468CrossRefGoogle Scholar
  15. Guendelman E, Selle A, Losasso F, Fedkiw R (2005) Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph 24(3):973–981CrossRefGoogle Scholar
  16. Heinzle S, Wolf J, Kanamori Y, Weyrich T, Nishita T, Gross M (2010) Motion blur for EWA surface splatting. Comput Graph Forum 29(2):733–742Google Scholar
  17. Heo N, Ko HS (2010) Detail-preserving fully-Eulerian interface tracking framework. ACM Trans Graph 29(6):176Google Scholar
  18. Hong JM, Kim CH (2005) Discontinuous fluids. ACM Trans Graph 24(3):915–920CrossRefGoogle Scholar
  19. Hong W, House DH, Keyser J (2008) Adaptive particles for incompressible fluid simulation. Vis Comput 24(7):535–543zbMATHCrossRefGoogle Scholar
  20. Kim B, Liu Y, Llamas I, Rossignac J (2007) Advections with significantly reduced dissipation and diffusion. IEEE Trans Vis Comput Graph 13(1):135–144CrossRefGoogle Scholar
  21. Kim D, Song OY, Ko HS (2008) A semi-lagrangian cip fluid solver without dimensional splitting. Comput Graph Forum 27(2): 467–475CrossRefGoogle Scholar
  22. Kipfer P, Westermann R (2006) Realistic and interactive simulation of rivers. In: Graphics interface, pp 41–48Google Scholar
  23. Lenaerts T, Adams B, Dutré P (2008) Porous flow in particle-based fluid simulations. ACM Trans Graph 27(3): 49CrossRefGoogle Scholar
  24. Lenaerts T, Dutré P (2008) Unified sph model for fluid-shell simulations. In: ACM SIGGRAPH 2008 posters, p 1Google Scholar
  25. Losasso F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. ACM Trans Graph 23(3):457–462CrossRefGoogle Scholar
  26. Losasso F, Shinar T, Selle A, Fedkiw R (2006) Multiple interacting liquids. ACM Trans Graph 25(3):812–819CrossRefGoogle Scholar
  27. Monaghan J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759MathSciNetCrossRefGoogle Scholar
  28. Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 154–159Google Scholar
  29. Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. J Comput Animat Virtual Worlds (CAVW) 15(3–4):159–171CrossRefGoogle Scholar
  30. Müller M, Solenthaler B, Keiser R, Gross M (2005) Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 237–244Google Scholar
  31. Osher S, Fedkiw R (2002) The level set method and dynamic implicit surfaces. Springer, New YorkGoogle Scholar
  32. Owen JM, Villumsen JV, Shapiro PR, Martel H (1998) Adaptive smoothed particle hydrodynamics: methodology. ii. ApJS 166:155–209CrossRefGoogle Scholar
  33. Heckbert P (1989) Fundamentals of texture mapping and image warping. UC Berkeley Master’s thesisGoogle Scholar
  34. Solenthaler B, Pajarola R (2008) Density contrast sph interfaces. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 211–218Google Scholar
  35. Solenthaler B, Pajarola R (2009) Predictive-corrective incompressible sph. ACM Trans Graph 28(3):1–6CrossRefGoogle Scholar
  36. Solenthaler B, Schläfli J, Pajarola R (2007) A unified particle model for fluid–solid interactions. Comput Animat Virtual Worlds 18(1):69–82CrossRefGoogle Scholar
  37. Song OY, Kim D, Ko HS (2007) Derivative particles for simulating detailed movements of fluids. IEEE Trans Vis Comput Graph 13(4):711–719CrossRefGoogle Scholar
  38. Song OY, Shin H, Ko HS (2005) Stable but non-dissipative water. ACM Trans Graph 24(1):81–97CrossRefGoogle Scholar
  39. Stam J (1999) Stable fluids. In: Proceedings of ACM SIGGRAPH 1999. Comput Graph 33:121–128Google Scholar
  40. Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of ACM SIGGRAPH 1995. Comput Graph 29:129–136Google Scholar
  41. Thürey N, Keiser R, Rüde U, Pauly M (2006) Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 7–15Google Scholar
  42. Zhu Y, Bridson R (2005) Animating sand as a fluid. ACM Trans Graph 24(3):965–972CrossRefGoogle Scholar
  43. Zwicker M, Pfister H, Baar J, Gross M (2002) EWA splatting. IEEE Trans Vis Comput Graph 8(3):223–238Google Scholar

Copyright information

© The Visualization Society of Japan 2011

Authors and Affiliations

  1. 1.Sejong UniversitySeoulSouth Korea
  2. 2.Seoul National UniversitySeoulSouth Korea

Personalised recommendations