Journal of Visualization

, Volume 13, Issue 4, pp 327–336 | Cite as

Particle-based simulation and visualization of fluid flows through porous media

  • Serkan Bayraktar
  • Uğur GüdükbayEmail author
  • Bülent Özgüç
Regular Paper


We propose a method of fluid simulation where boundary conditions are designed in such a way that fluid flow through porous media, pipes, and chokes can be realistically simulated. Such flows are known to be low Reynolds number incompressible flows and occur in many real life situations. To obtain a high quality fluid surface, we include a scalar value in isofunction. The scalar value indicates the relative position of each particle with respect to the fluid surface.

Graphical Abstract


Physically based modeling Fluid simulation Particle-based modeling Smoothed particle hydrodynamics 

Supplementary material

Supplementary material 1 (MPEG 1932 kb)

Supplementary material 2 (MPEG 4857 kb)

Supplementary material 3 (MPEG 2969 kb)

Supplementary material 4 (MPEG 4394 kb)

Supplementary material 5 (MPEG 3496 kb)

12650_2010_41_MOESM6_ESM.mpg (4.6 mb)
Supplementary material 6 (MPEG 4700 kb)
12650_2010_41_MOESM7_ESM.mpg (1.9 mb)
Supplementary material 7 (MPEG 1918 kb)

Supplementary material 8 (MPEG 3786 kb)


  1. Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. ACM Trans Graph (Proc of SIGGRAPH’07) 26(3):8; Article no. 48Google Scholar
  2. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, New YorkzbMATHGoogle Scholar
  3. Bayraktar S, Güdükbay U, Özgüç B (2009) GPU-based neighbor-search algorithm for particle simulations. J Graph GPU Game Tools 14(1):31–42Google Scholar
  4. Bear J (1988) Dynamics of fluids in porous media. Courier Dover, New YorkzbMATHGoogle Scholar
  5. Becker M, Teschner M (2007) Weakly compressible SPH for free surface flows. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217Google Scholar
  6. Carlson M, Mucha PJ, Turk G (2004) Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph 23(3):377–384CrossRefGoogle Scholar
  7. Cleary PW, Pyo SH, Prakash M, Koo BK (2007) Bubbling and frothing liquids. ACM Trans Graph (Proc of SIGGRAPH’07) 26(3):6; Article no. 97Google Scholar
  8. Desbrun M, Cani M (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Eurographics workshop on computer animation and simulation (EGCAS), pp 61–76Google Scholar
  9. Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph (Proc of SIGGRAPH ’02) 21(3):736–744Google Scholar
  10. Foster N, Fedkiw R (2001) Practical animation of liquids. ACM Comp Graph (Proc. of SIGGRAPH ’01), 23–30Google Scholar
  11. Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Model Image Process 58(5):471–483CrossRefGoogle Scholar
  12. Guendelman E, Selle A, Losasso F, Fedkiw R (2005) Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph 24(3):973–981CrossRefGoogle Scholar
  13. Hadap S, Magnenat-Thalmann N (2001) Modeling dynamic hair as a continuum. Comp Graph Forum 20(3):329–338CrossRefGoogle Scholar
  14. Kipfer P, Westermann R (2006) Realistic and interactive simulation of rivers. In: Proceedings of graphics interface, pp 41–48Google Scholar
  15. Kruger J, Kipfer P, Kondratieva P, Westermann R (2005) A particle system for interactive visualization of 3D flows. IEEE Trans Vis Comp Graph 11(6):744–756CrossRefGoogle Scholar
  16. Lenaerts T, Adams B, Dutré P (2008) Porous flow in particle-based fluid simulations. ACM Trans Graph (Proc. of SIGGRAPH’08) 27(3):8; Article no. 49Google Scholar
  17. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Comp Graph (Proc of SIGGRAPH’87) 21(4):163–169Google Scholar
  18. Losasso F, Talton JO, Kwatra N, Fedkiw R (2008) Two-way coupled SPH and particle level set fluid simulation. IEEE Trans Vis Comp Graph 14(4):797–804CrossRefGoogle Scholar
  19. Miller G, Pearce A (1989) Globular dynamics: a connected particle system for animating viscous fluids. Comp Graph 13(3):305–309CrossRefGoogle Scholar
  20. Monaghan J (1994) Simulating free surface flows with SPH. J Comp Phys 110(2):399–406zbMATHCrossRefGoogle Scholar
  21. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comp Phys 136(1):214–226zbMATHCrossRefGoogle Scholar
  22. Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. J Comp Anim Virtual Worlds 15(3–4):159–171CrossRefGoogle Scholar
  23. POVRay (2009) The persistence of vision raytracer.
  24. Premoze S, Tasdizen T, Bigler J, Lefohn AE, Whitaker RT (2003) Particle-based simulation of fluids. Comp Graph Forum (Proc of Eurographics’03) 22(3):401–410Google Scholar
  25. Reeves WT (1983) Particle systems: a technique for modeling a class of fuzzy objects. ACM Trans Graph 2(2):91–108CrossRefGoogle Scholar
  26. Solenthaler B, Schläfli J, Pajarola R (2007) A unified particle model for fluid–solid interactions. Comp Anim Virtual Worlds 18(1):69–82CrossRefGoogle Scholar
  27. Song OY, Kim D, Ko HS (2007) Derivative particles for simulating detailed movements of fluids. IEEE Trans Vis Comp Graph 13(4):711–719CrossRefGoogle Scholar
  28. Stam J (1999) Stable fluids. In: ACM Comp Graph (Proc. of SIGGRAPH ’99), Addison Wesley, Los Angeles, pp 121–128Google Scholar
  29. Steele K, Cline D, Egbert PK, Dinerstein J (2004) Modeling and rendering viscous liquids. Comp Anim Virtual Worlds 15(3–4):183–192CrossRefGoogle Scholar
  30. Stora D, Agliati PO, Cani MP, Neyret F, Gascuel JD (1999) Animating lava flows. In: Proceedings of graphical interface, pp 203–210Google Scholar
  31. Terzopoulos D, Platt J, Fleischer K (1991) Heating and melting deformable models. J Vis Comp Anim 2(2):68–73CrossRefGoogle Scholar
  32. Tonnesen D (1991) Modeling liquids and solids using thermal particles. In: Proceedings of graphical interace, pp 255–262Google Scholar
  33. Zhu Y, Fox PJ (2002) Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J Comp Phys 182(2):622–645zbMATHCrossRefGoogle Scholar
  34. Zhu Y, Fox PJ, Morris JP (1999) A pore-scale numerical model for flow through porous media. Int J Numer Anal Methods Geomech 23:881–904zbMATHCrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2010

Authors and Affiliations

  • Serkan Bayraktar
    • 1
  • Uğur Güdükbay
    • 1
    Email author
  • Bülent Özgüç
    • 1
  1. 1.Department of Computer EngineeringBilkent UniversityAnkaraTurkey

Personalised recommendations