Skip to main content
Log in

Conversion Efficiency of Lignin-Rich Olive Pomace to Produce Nutrient-Rich Insect Biomass by Black Soldier Fly Larvae, Hermetia illucens

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

At present, organic waste management by insects is being practiced to produce insect biomass to combat food deficiency challenges and reduce the huge amount of waste. Black soldier fly (BSF) larvae are used to reduce and reutilise organic wastes to decrease animal feeding costs. This study examined the conversion efficiency of olive pomace residue (OPR) by BSF larvae to produce insect biomass. Different concentrations of OPR (0, 25, 50, and 75% of the substrate) mixed with wheat bran were used as substrates for BSF larvae. Our findings demonstrate that the amount of lignin increased by 233% with 75% OPR treatment (39.5 ± 0.02%) as compared to the control treatment (11.9 ± 0.04%), which prolonged the development period of pupae (27 days). Pioneer goals were achieved by reducing 19% of 75% OPR and converting it to 22% insect biomass. Moreover, the conversion efficiency from 75% OPR to insect biomass was high and found to be 33% for protein, 79.76% for lauric acid, and 65.05% for palmitoleic acid (omega-7). Thus, the present study increased the awareness regarding safe reuse, and valorised OPR as a good substrate for the sustainable development of BSF larvae.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guiné, R.: Chemistry and bioactive components of olive oil. In: Virgin Olive Oil, pp. 1–13. Nova Publishers, New York (2014)

    Google Scholar 

  2. Gómez-Muñoz, B., Hatch, D.J., Bol, R., García-Ruiz, R.: The compost of olive mill pomace: from a waste to a resource-environmental benefits of its application in olive oil groves. In: Sustainable Development-Authoritative and Leading Edge Content for Environmental Management, pp. 459–484. InTech, London (2012)

    Google Scholar 

  3. Kandylis, P., Vekiari, A., Kanellaki, M., Kamoun, N.G., Msallem, M., Kourkoutas, Y.: Comparative study of extra virgin olive oil flavor profile of Koroneiki variety (Olea europaea var. Microcarpa alba) cultivated in Greece and Tunisia during one period of harvesting. LWT Food Sci. Technol. 44(5), 1333–1341 (2011). https://doi.org/10.1016/j.lwt.2010.12.021

    Article  Google Scholar 

  4. International Olive Oil Council, I.: World Olive Oil Figures. (2013).

  5. Lama-Muñoz, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Palacios-Díaz, R., Fernández-Bolaños, J.: A study of the precursors of the natural antioxidant phenol 3, 4-dihydroxyphenylglycol in olive oil waste. Food Chem. 140(1–2), 154–160 (2013). https://doi.org/10.1016/j.foodchem.2013.02.063

    Article  Google Scholar 

  6. de la Puente, J.Á., Arana, J.J., Garcia-Ruiz, R.: Composting olive mill pomace: the Andalusian experience. Biocycle 51, 31 (2010)

    Google Scholar 

  7. Skaltsounis, A.-L., Argyropoulou, A., Aligiannis, N., Xynos, N.: Recovery of high added value compounds from olive tree products and olive processing byproducts. In: Olive and Olive Oil Bioactive Constituents, pp. 333–356. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  8. Neifar, M., Jaouani, A., Ayari, A., Abid, O., Salem, H.B., Boudabous, A., Najar, T., Ghorbel, R.E.: Improving the nutritive value of olive cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere 91(1), 110–114 (2013). https://doi.org/10.1016/j.chemosphere.2012.12.015

    Article  Google Scholar 

  9. La Rubia-García, M.D., Yebra-Rodríguez, Á., Eliche-Quesada, D., Corpas-Iglesias, F.A., López-Galindo, A.: Assessment of olive mill solid residue (pomace) as an additive in lightweight brick production. Constr. Build. Mater. 36, 495–500 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.009

    Article  Google Scholar 

  10. Esteve, C., Marina, M., García, M.: Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. 167, 272–280 (2015). https://doi.org/10.1016/j.foodchem.2014.06.090

    Article  Google Scholar 

  11. Mennane, Z., Tada, S., Aki, I., Faid, M., Hassani, S., Salmaoui, S.: Caractérisation physico-chimique et microbiologique des grignons d’olive de 26 huileries traditionnelles de la région de Beni Mellal (Maroc). Technol Lab 5(19), 1 (2010)

    Google Scholar 

  12. Roig, A., Cayuela, M.L., Sánchez-Monedero, M.: An overview on olive mill wastes and their valorisation methods. Waste Manage. 26(9), 960–969 (2006). https://doi.org/10.1016/j.wasman.2005.07.024

    Article  Google Scholar 

  13. Medouni-Haroune, L., Zaidi, F., Medouni-Adrar, S., Kecha, M.: Olive pomace: from an olive mill waste to a resource, an overview of the new treatments. J. Crit. Rev. 5, 1–6 (2018). https://doi.org/10.22159/jcr.2018v5i5.28840

    Article  Google Scholar 

  14. Niaounakis, M., Halvadakis, C.P.: Olive Processing Waste Management: Literature Review and Patent Survey. Elsevier, Amsterdam (2006)

    Google Scholar 

  15. Ramos-Elorduy, J.: Anthropo-entomophagy: cultures, evolution and sustainability. Entomol. Res. 39(5), 271–288 (2009). https://doi.org/10.1111/j.1748-5967.2009.00238.x

    Article  Google Scholar 

  16. Sogari, G., Amato, M., Biasato, I., Chiesa, S., Gasco, L.: The potential role of insects as feed: a multi-perspective review. Animals 9(4), 119 (2019). https://doi.org/10.3390/ani9040119

    Article  Google Scholar 

  17. El-Dakar, M.A., Ramzy, R.R., Wang, D., Ji, H.: Sustainable management of Se-rich silkworm residuals by black soldier flies larvae to produce a high nutritional value and accumulate ω-3 PUFA. Waste Manage. 124, 72–81 (2021). https://doi.org/10.1016/j.wasman.2021.01.040

    Article  Google Scholar 

  18. El-Dakar, M.A., Ramzy, R.R., Ji, H., Plath, M.: Bioaccumulation of residual omega-3 fatty acids from industrial Schizochytrium microalgal waste using black soldier fly (Hermetia illucens) larvae. J. Clean. Prod. 268, 122288 (2020). https://doi.org/10.1016/j.jclepro.2020.122288

    Article  Google Scholar 

  19. Scala, A., Cammack, J.A., Salvia, R., Scieuzo, C., Franco, A., Bufo, S.A., Tomberlin, J.K., Falabella, P.: Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 10(1), 1–8 (2020). https://doi.org/10.1038/s41598-020-76571-8

    Article  Google Scholar 

  20. Isibika, A., Vinnerås, B., Kibazohi, O., Zurbrügg, C., Lalander, C.: Pre-treatment of banana peel to improve composting by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. Waste Manage. 100, 151–160 (2019). https://doi.org/10.1016/j.wasman.2019.09.017

    Article  Google Scholar 

  21. Lim, J.-W., Mohd-Noor, S.-N., Wong, C.-Y., Lam, M.-K., Goh, P.-S., Beniers, J., Oh, W.-D., Jumbri, K., Ghani, N.A.: Palatability of black soldier fly larvae in valorizing mixed waste coconut endosperm and soybean curd residue into larval lipid and protein sources. J. Environ. Manage. 231, 129–136 (2019). https://doi.org/10.1016/j.jenvman.2018.10.022

    Article  Google Scholar 

  22. Meneguz, M., Schiavone, A., Gai, F., Dama, A., Lussiana, C., Renna, M., Gasco, L.: Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 98(15), 5776–5784 (2018). https://doi.org/10.1002/jsfa.9127

    Article  Google Scholar 

  23. Palma, L., Fernandez-Bayo, J., Niemeier, D., Pitesky, M., VanderGheynst, J.S.: Managing high fiber food waste for the cultivation of black soldier fly larvae. NPJ Sci. Food 3(1), 1–7 (2019). https://doi.org/10.1038/s41538-019-0047-7

    Article  Google Scholar 

  24. Webster, C., Rawles, S., Koch, J., Thompson, K., Kobayashi, Y., Gannam, A., Twibell, R., Hyde, N.: Bio-Ag reutilization of distiller’s dried grains with solubles (DDGS) as a substrate for black soldier fly larvae, Hermetia illucens, along with poultry by-product meal and soybean meal, as total replacement of fish meal in diets for Nile tilapia Oreochromis niloticus. Aquac. Nutr. 22(5), 976–988 (2016). https://doi.org/10.1111/anu.12316

    Article  Google Scholar 

  25. Supriyatna, A., Manurung, R., Esyanti, R.R., Putra, R.E.: Growth of black soldier larvae fed on cassava peel wastes, an agriculture waste. J. Entomol. Zool. Stud. 4(6), 161–165 (2016)

    Google Scholar 

  26. Nguyen, T.T., Tomberlin, J.K., Vanlaerhoven, S.: Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 44(2), 406–410 (2015). https://doi.org/10.1093/ee/nvv002

    Article  Google Scholar 

  27. Gold, M., Cassar, C.M., Zurbrügg, C., Kreuzer, M., Boulos, S., Diener, S., Mathys, A.: Biowaste treatment with black soldier fly larvae: increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manage. 102, 319–329 (2020). https://doi.org/10.1016/j.wasman.2019.10.036

    Article  Google Scholar 

  28. Lalander, C., Diener, S., Zurbrügg, C., Vinnerås, B.: Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 208, 211–219 (2019). https://doi.org/10.1016/j.jclepro.2018.10.017

    Article  Google Scholar 

  29. Gao, Z., Wang, W., Lu, X., Zhu, F., Liu, W., Wang, X., Lei, C.: Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean. Prod. 230, 974–980 (2019). https://doi.org/10.1016/j.jclepro.2019.05.074

    Article  Google Scholar 

  30. Surendra, K., Tomberlin, J.K., van Huis, A., Cammack, J.A., Heckmann, L.-H.L., Khanal, S.K.: Rethinking organic wastes bioconversion: evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Manage. 117, 58–80 (2020). https://doi.org/10.1016/j.wasman.2020.07.050

    Article  Google Scholar 

  31. Zhou, J., Chen, Y., Ji, H., Yu, E.: The effect of replacing fish meal with fermented meal mixture of silkworm pupae, rapeseed and wheat on growth, body composition and health of mirror carp (Cyprinus carpio var. Specularis). Aquac. Nutr. 23(4), 741–754 (2017). https://doi.org/10.1111/anu.12441

    Article  Google Scholar 

  32. Xu, X., Ji, H., Belghit, I., Sun, J.: Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var. specularis). Aquaculture (2020). https://doi.org/10.1016/j.aquaculture.2020.735453

    Article  Google Scholar 

  33. Rawski, M., Mazurkiewicz, J., Kierończyk, B., Józefiak, D.: Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: the effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 10(11), 2119 (2020). https://doi.org/10.3390/ani10112119

    Article  Google Scholar 

  34. Kim, Y.B., Kim, D.-H., Jeong, S.-B., Lee, J.-W., Kim, T.-H., Lee, H.-G., Lee, K.-W.: Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Pollut Sci (2020). https://doi.org/10.1016/j.psj.2020.01.018

    Article  Google Scholar 

  35. Crosbie, M., Zhu, C., Shoveller, A.K., Huber, L.-A.: Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Transl. Anim. Sci. 4(3), txaa104 (2020). https://doi.org/10.1093/tas/txaa104

    Article  Google Scholar 

  36. Bejaei, M., Cheng, K.: The effect of including full-fat dried black soldier fly larvae in laying hen diet on egg quality and sensory characteristics. J. Insects Food Feed 6(3), 305–314 (2020). https://doi.org/10.3920/JIFF2019.0045

    Article  Google Scholar 

  37. Ministry of Health of the People’s Republic of China, C.M.o.H.: National food safety standard—determination of fat in foods. In: GB 5009.6-2016. Standards Press of China, Beijing, (2016)

  38. Ministry of Health of the People’s Republic of China, C.M.o.H.: National food safety standard—determination of protein in foods. In: GB 5009.5-2016. vol. 30, p. 60. Standards Press of China, Beijing, (2016)

  39. Ministry of Health of the People’s Republic of China, C.M.o.H.: National food safety standard—determination of fatty acid in foods. In: GB 5009.168-2016. Standards Press of China, Beijing (2016)

  40. Wang, X.: Experimental Principles and Techniques of Plant Physiology and Biochemistry, 2nd edn. Higher Education Press, Beijing (2006).. (in Chinese)

    Google Scholar 

  41. Sumin, X., Xiufeng, Z., Yongyi, Z.: Determination of cellulose, hemi-cellulose and ligin in rice hull. Cereal Feed Ind. 8, 40–41 (2005)

    Google Scholar 

  42. Gligorescu, A., Fischer, C.H., Larsen, P.F., Nørgaard, J.V., Heckman, L.-H.L.: Production and optimization of Hermetia illucens (L.) larvae reared on food waste and utilized as feed ingredient. Sustainability 12(23), 9864 (2020)

    Article  Google Scholar 

  43. Nalawade, V., Bhilave, M., Kulkarni, J.: Protein conversion efficiency (PCE) in muscle of freshwater fish Labeo rohita fed on formulated feed. Biol. Forum 1, 79 (2014)

    Google Scholar 

  44. Liu, Z., Minor, M., Morel, P.C., Najar-Rodriguez, A.J.: Bioconversion of three organic wastes by black soldier fly (Diptera: Stratiomyidae) larvae. Environ. Entomol. 47(6), 1609–1617 (2018). https://doi.org/10.1093/ee/nvy141

    Article  Google Scholar 

  45. Miranda, C.D., Cammack, J.A., Tomberlin, J.K.: Life-history traits of the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), reared on three manure types. Animals 9(5), 281 (2019). https://doi.org/10.3390/ani9050281

    Article  Google Scholar 

  46. Li, Q., Zheng, L., Qiu, N., Cai, H., Tomberlin, J.K., Yu, Z.: Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manage. 31(6), 1316–1320 (2011). https://doi.org/10.1016/j.wasman.2011.01.005

    Article  Google Scholar 

  47. Jeon, H., Park, S., Choi, J., Jeong, G., Lee, S.-B., Choi, Y., Lee, S.-J.: The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr. Microbiol. 62(5), 1390–1399 (2011). https://doi.org/10.1007/s00284-011-9874-8

    Article  Google Scholar 

  48. El-Dakar, M.A., Ramzy, R.R., Plath, M., Ji, H.: Evaluating the impact of bird manure vs. mammal manure on Hermetia illucens larvae. J. Clean. Prod. 278, 123570 (2021). https://doi.org/10.1016/j.jclepro.2020.123570

    Article  Google Scholar 

  49. Julita, U., Suryani, Y., Kinasih, I., Yuliawati, A., Cahyanto, T., Maryeti, Y., Permana, A., Fitri, L.: Growth performance and nutritional composition of black soldier fly, Hermetia illucens (L), (Diptera: Stratiomyidae) reared on horse and sheep manure. Paper presented at the IOP Conference Series: Earth and Environmental Science

  50. De Smet, J., Wynants, E., Cos, P., Van Campenhout, L.: Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Appl. Environ. Microbiol. (2018). https://doi.org/10.1128/AEM.02722-17

    Article  Google Scholar 

  51. Ewald, N., Vidakovic, A., Langeland, M., Kiessling, A., Sampels, S., Lalander, C.: Fatty acid composition of black soldier fly larvae (Hermetia illucens)–possibilities and limitations for modification through diet. Waste Manage. 102, 40–47 (2020). https://doi.org/10.1016/j.wasman.2019.10.014

    Article  Google Scholar 

  52. Weththasinghe, P., Hansen, J., Nøkland, D., Lagos, L., Rawski, M., Øverland, M.: Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture 530, 735785 (2021). https://doi.org/10.1016/j.aquaculture.2020.735785

    Article  Google Scholar 

  53. Chia, S.Y., Tanga, C.M., Osuga, I.M., Cheseto, X., Ekesi, S., Dicke, M., van Loon, J.J.: Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. Entomol. Exp. Appl. 168(6–7), 472–481 (2020). https://doi.org/10.1111/eea.12940

    Article  Google Scholar 

  54. El-Dakar, M.A., Ramzy, R.R., Ji, H.: Influence of substrate inclusion of quail manure on the growth performance, body composition, fatty acid and amino acid profiles of black soldier fly larvae (Hermetia illucens). Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2021.145528

    Article  Google Scholar 

  55. Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbø, R., Torstensen, B.E., Lock, E.-J.: Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 12(8), e0183188 (2017). https://doi.org/10.1371/journal.pone.0183188

    Article  Google Scholar 

  56. Leong, S.Y., Kutty, S.: Characteristic of Hermetia illucens fatty acid and that of the fatty acid methyl ester synthesize based on upcycling of perishable waste. Waste Biomass Valor. 11, 1–8 (2020). https://doi.org/10.1007/s12649-020-01018-0

    Article  Google Scholar 

  57. Hoc, B., Genva, M., Fauconnier, M.-L., Lognay, G., Francis, F., Megido, R.C.: About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae. Sci. Rep. 10(1), 1–8 (2020). https://doi.org/10.1038/s41598-020-68784-8

    Article  Google Scholar 

  58. Decuypere, J., Dierick, N.: The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutr. Res. Rev. 16(2), 193–210 (2003). https://doi.org/10.1079/NRR200369

    Article  Google Scholar 

  59. Li, S., Ji, H., Zhang, B., Zhou, J., Yu, H.: Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 477, 62–70 (2017). https://doi.org/10.1016/j.aquaculture.2017.04.015

    Article  Google Scholar 

  60. Churchward, C.P., Alany, R.G., Snyder, L.A.: Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 44(5), 561–570 (2018). https://doi.org/10.1080/1040841X.2018.1467875

    Article  Google Scholar 

  61. Wang, S.Y., Wu, L., Li, B., Zhang, D.: Reproductive potential and nutritional composition of Hermetia illucens (Diptera: Stratiomyidae) prepupae reared on different organic wastes. J. Econ. Entomol. 113(1), 527–537 (2020). https://doi.org/10.1093/jee/toz296

    Article  Google Scholar 

  62. Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., Savastano, D.: Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. J. Clean. Prod. 140, 890–905 (2017). https://doi.org/10.1016/j.jclepro.2016.06.154

    Article  Google Scholar 

  63. Surendra, K., Olivier, R., Tomberlin, J.K., Jha, R., Khanal, S.K.: Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 98, 197–202 (2016). https://doi.org/10.1016/j.renene.2016.03.022

    Article  Google Scholar 

  64. Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P., De Smet, S.: Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 97(8), 2594–2600 (2017). https://doi.org/10.1002/jsfa.8081

    Article  Google Scholar 

  65. Giannetto, A., Oliva, S., Lanes, C.F.C., de Araújo Pedron, F., Savastano, D., Baviera, C., Parrino, V., Paro, G.L., Spanò, N.C., Cappello, T.: Hermetia illucens (Diptera: Stratiomydae) larvae and prepupae: biomass production, fatty acid profile and expression of key genes involved in lipid metabolism. J. Biotechnol. 307, 44–54 (2019). https://doi.org/10.1016/j.jbiotec.2019.10.015

    Article  Google Scholar 

  66. Menoyo, D., Lopez-Bote, C.J., Bautista, J.M., Obach, A.: Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids. Aquaculture 225(1–4), 295–307 (2003). https://doi.org/10.1016/S0044-8486(03)00297-7

    Article  Google Scholar 

  67. Salini, M.J., Turchini, G.M., Glencross, B.D.: Effect of dietary saturated and monounsaturated fatty acids in juvenile barramundi Lates calcarifer. Aquac. Nutr. 23(2), 264–275 (2015). https://doi.org/10.1111/anu.12389

    Article  Google Scholar 

  68. Cao, H., Gerhold, K., Mayers, J.R., Wiest, M.M., Watkins, S.M., Hotamisligil, G.S.: Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134(6), 933–944 (2008)

    Article  Google Scholar 

  69. Skonberg, D.I., Rasco, B.A., Dong, F.M.: Fatty acid composition of salmonid muscle changes in response to a high oleic acid diet. J. Nutr. 124(9), 1628–1638 (1994). https://doi.org/10.1093/jn/124.9.1628

    Article  Google Scholar 

  70. Gold, M., Tomberlin, J.K., Diener, S., Zurbrügg, C., Mathys, A.: Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: a review. Waste Manage. 82, 302–318 (2018). https://doi.org/10.1016/j.wasman.2018.10.022

    Article  Google Scholar 

  71. Wang, Y.-S., Shelomi, M.: Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 6(10), 91 (2017). https://doi.org/10.3390/foods6100091

    Article  Google Scholar 

  72. Bonelli, M., Bruno, D., Brilli, M., Gianfranceschi, N., Tian, L., Tettamanti, G., Caccia, S., Casartelli, M.: Black soldier fly larvae adapt to different food substrates through morphological and functional responses of the midgut. Int. J. Mol. Sci. 21(14), 4955 (2020). https://doi.org/10.3390/ijms21144955

    Article  Google Scholar 

  73. Bava, L., Jucker, C., Gislon, G., Lupi, D., Savoldelli, S., Zucali, M., Colombini, S.: Rearing of Hermetia illucens on different organic by-products: influence on growth, waste reduction, and environmental impact. Animals 9(6), 289 (2019)

    Article  Google Scholar 

  74. Shumo, M., Osuga, I.M., Khamis, F.M., Tanga, C.M., Fiaboe, K.K., Subramanian, S., Ekesi, S., van Huis, A., Borgemeister, C.: The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 9(1), 1–13 (2019). https://doi.org/10.1038/s41598-019-46603-z

    Article  Google Scholar 

  75. Cai, M., Zhang, K., Zhong, W., Liu, N., Wu, X., Li, W., Zheng, L., Yu, Z., Zhang, J.: Bioconversion-composting of golden needle mushroom (Flammulina velutipes) root waste by black soldier fly (Hermetia illucens, Diptera: Stratiomyidae) larvae, to obtain added-value biomass and fertilizer. Waste Biomass Valor. 10(2), 265–273 (2019). https://doi.org/10.1007/s12649-017-0063-2

    Article  Google Scholar 

  76. Xiao, X., Mazza, L., Yu, Y., Cai, M., Zheng, L., Tomberlin, J.K., Yu, J., van Huis, A., Yu, Z., Fasulo, S.: Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. J. Environ. Manage. 217, 668–676 (2018). https://doi.org/10.1016/j.jenvman.2018.03.122

    Article  Google Scholar 

  77. Rehman, K., Rehman, A., Cai, M., Zheng, L., Xiao, X., Somroo, A.A., Wang, H., Li, W., Yu, Z., Zhang, J.: Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 154, 366–373 (2017). https://doi.org/10.1016/j.jclepro.2017.04.019

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Blue Granary Technology Innovation Project (2019YFD0900200) and the Shaanxi Innovation Capacity Support Program (2018TD-021).

Author information

Authors and Affiliations

Authors

Contributions

MAED and RRR: Conceptualization, data curation, formal analysis. HJ: funding acquisition. MAED, RRR, DW and HJ: investigation. MAED: methodology. RRR: software. HJ: supervision. MAED and RRR: writing—original draft. MAED, RRR and HJ: writing—review and editing.

Corresponding authors

Correspondence to Marco A. El-Dakar or Hong Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramzy, R.R., El-Dakar, M.A., Wang, D. et al. Conversion Efficiency of Lignin-Rich Olive Pomace to Produce Nutrient-Rich Insect Biomass by Black Soldier Fly Larvae, Hermetia illucens. Waste Biomass Valor 13, 893–903 (2022). https://doi.org/10.1007/s12649-021-01546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01546-3

Keywords

Navigation