Advertisement

Incorporation of Wooden Furniture Wastes in Fired Clay Bricks for Improved Thermal Insulation: A Feasability Study

  • H. Abjaghou
  • J. Bourret
  • N. Tessier-Doyen
  • M. Fassier
  • M. A. Bruneaux
  • A. Lacanilao
  • V. Quint
  • A. Smith
  • D. S. Smith
  • C. PeyratoutEmail author
Original Paper
  • 48 Downloads

Abstract

The main objective of this study is to improve thermal insulation of fired clay bricks through addition of wooden furniture waste. The effect of the nature and the amount (5 or 10 wt%) of wooden furniture waste on the properties of the final porous fired brick prepared by extrusion was assessed though measurements of mass loss, drying and sintering shrinkage, porosity, bulk density and thermal conductivity. Results showed that incorporation of wooden furniture waste into the clay mixture yielded increase of porosity after firing and hence decrease of thermal conductivity. For example, addition of 10 wt% wood waste yielded a pore volume fraction of 47% with a conductivity of 0.42 W m−1 K−1. Moreover, due to orientation of the clay platelets, the anisotropy in thermal conductivity was significant, ranging from a ratio of 1.1–1.5.

Graphic Abstract

Keywords

Thermal insulation Wooden furniture wastes Fired clay bricks Building materials 

Notes

Acknowledgements

This research was financed by the TREMPLIN CARNOT MECD and the Region Nouvelle-Aquitaine.

References

  1. 1.
    Pacheco-Togal, F., Lourenco, P., Labrincha, J., Chindaprasirt, P., Kumar, S.: Eco-efficient Masonry Bricks and Blocks: Design. Woodland Publishing, Properties and Durability (2014)Google Scholar
  2. 2.
    Bourret, J., Michot, A., Tessier-Doyen, N., Naït-Ali, B., Pennec, F., Alzina, A., Vicente, J., Peyratout, C.S., Smith, D.S.: Thermal conductivity of very porous kaolin-based ceramics. J. Am. Ceram. Soc. 97, 938–944 (2014).  https://doi.org/10.1111/jace.12767 CrossRefGoogle Scholar
  3. 3.
    Schwartzwalder, K., Somers, A.V.: Method of making porous ceramic articles. US Patent (1963)Google Scholar
  4. 4.
    Hammel, E.C., Ighodaro, O.L.-R., Okoli, O.I.: Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 40, 15351–15370 (2014).  https://doi.org/10.1016/j.ceramint.2014.06.095 CrossRefGoogle Scholar
  5. 5.
    Hotta, Y., Alberius, P.C.A., Bergström, L.: Coated polystyrene particles as templates for ordered macroporous silica structures with controlled wall thickness. J. Mater. Chem. 13, 496–501 (2003).  https://doi.org/10.1039/b208795m CrossRefGoogle Scholar
  6. 6.
    Fitzgerald, T.J., Michaud, V.J., Mortensen, A.: Processing of microcellular SiC foams Part II Ceramic foam production. J. Mater. Sci. 30, 1037–1045 (1995).  https://doi.org/10.1007/BF01178442 CrossRefGoogle Scholar
  7. 7.
    Sutcu, M., Akkurt, S.: The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35, 2625–2631 (2009).  https://doi.org/10.1016/j.ceramint.2009.02.027 CrossRefGoogle Scholar
  8. 8.
    Andreola, F., Lancellotti, I., Manfredini, T., Bondioli, F., Barbieri, L.: Rice husk ash (RHA) recycling in brick manufacture: effects on physical and microstructural properties. Waste Biomass Valoriz. 9, 2529–2539 (2018).  https://doi.org/10.1007/s12649-018-0343-5 CrossRefGoogle Scholar
  9. 9.
    Veiseh, S., Yousefi, A.A.: The Use of Polystyrene in Lightweight Brick Production (2003)Google Scholar
  10. 10.
    Živcová, Z., Černý, M., Pabst, W., Gregorová, E.: Elastic properties of porous oxide ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 2765–2771 (2009).  https://doi.org/10.1016/j.jeurceramsoc.2009.03.033 CrossRefGoogle Scholar
  11. 11.
    Eliche-Quesada, D., Corpas-Iglesias, F.A., Pérez-Villarejo, L., Iglesias-Godino, F.J.: Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Constr. Build Mater. 34, 275–284 (2012).  https://doi.org/10.1016/j.conbuildmat.2012.02.079 CrossRefGoogle Scholar
  12. 12.
    Devant, M., Cusidó, J.A., Soriano, C.: Custom formulation of red ceramics with clay, sewage sludge and forest waste. Appl. Clay Sci. 53, 669–675 (2011).  https://doi.org/10.1016/j.clay.2011.06.002 CrossRefGoogle Scholar
  13. 13.
    Barbieri, L., Andreola, F., Lancellotti, I., Taurino, R.: Management of agricultural biomass wastes: preliminary study on characterization and valorisation in clay matrix bricks. Waste Manag. 33, 2307–2315 (2013).  https://doi.org/10.1016/j.wasman.2013.03.014 CrossRefGoogle Scholar
  14. 14.
    Guinard, L., Deroubaix, G., Roux, M.L., Levet, A.L., Quint, V.: Evaluation du gisement de déchets bois et son positionnement dans la filière bois/bois-énergie (DEBOIDEM), FCBA pour l’ADEME. Marché n°1302C0059, Coordination technique : Marie APRIL - Service Produits et Efficacité Matière, Direction Économie Circulaire et Déchets – ADEME Angers. (2015)Google Scholar
  15. 15.
    APPEL A PROJETS 2017, volet recherche : présentation du projet BRITER en vue d’expertise (2017)Google Scholar
  16. 16.
    NF EN ISO 17892-4: Geotechnical investigation and testing—Laboratory testing of soil—Part 4 : Determination of particle size distribution (2018)Google Scholar
  17. 17.
    NF P 94-051: Soil : investigation and testing. Determination of Atterberg’s limits, Liquid limit test using cassagrande apparatus, Plastic limit test on rolled thread (1993)Google Scholar
  18. 18.
    MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE: Arrêté du 3 août 2018 relatif aux prescriptions générales applicables aux installations relevant du régime de l’enregistrement au titre de rubrique 2910 de la nomenclature des installations classées pour la protection de l’environnementGoogle Scholar
  19. 19.
    Nigay, P.M., Sani, R., Cutard, T., Nzihou, A.: Modeling of the thermal and mechanical properties of clay ceramics incorporating organic additives. Mater. Sci. Eng. A 708, 375–382 (2017).  https://doi.org/10.1016/j.msea.2017.09.131 CrossRefGoogle Scholar
  20. 20.
    Cumberland, D.J., Crawford, R.J.: The Packing of Particles. Elsevier, Amsterdam (1987)Google Scholar
  21. 21.
    Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Appl. Phys. 32(9), 1679–1684 (1961)CrossRefGoogle Scholar
  22. 22.
    Smith, D., Alzina, A., Bourret, J., Nait-Ali, B., Pennec, F., Tessier-Doyen, N., Otsu, K., Matsubara, H., Elser, P., Gonzenbach, U.: Thermal conductivity of porous materials. J. Mater. Res. (2013).  https://doi.org/10.1557/jmr.2013.179 CrossRefGoogle Scholar
  23. 23.
    Michot, A., Smith, D.S., Degot, S., Lecomte, G.L.: Effect of dehydroxylation on the specific heat of simple clay mixtures. J. Eur. Ceram. Soc. 31, 1377–1382 (2011).  https://doi.org/10.1016/j.jeurceramsoc.2011.01.007 CrossRefGoogle Scholar
  24. 24.
    Ben Lakhal, S., Lecomte-Nana, G., Naït-Ali, B., Lemercier, H., Smith, D.S.: A method for estimating the specific heat capacity of a raw clay mixture. Ziegelindustrie n° 6. 27–35 (2014)Google Scholar
  25. 25.
    Görhan, G., Şimşek, O.: Porous clay bricks manufactured with rice husks. Constr. Build. Mater. 40, 390–396 (2013).  https://doi.org/10.1016/j.conbuildmat.2012.09.110 CrossRefGoogle Scholar
  26. 26.
    BIA: The Brick Industry Association (USA) (Technical notes on Brick Construction 9, Manufacturing of Brick) (2006)Google Scholar
  27. 27.
    Nigay, P.M., Cutard, T., Nzihou, A.: The impact of heat treatment on the microstructure of a clay ceramic and its thermal and mechanical properties. Ceram. Int. 43, 1747–1754 (2017).  https://doi.org/10.1016/j.ceramint.2016.10.084 CrossRefGoogle Scholar
  28. 28.
    Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779–784 (1952).  https://doi.org/10.1063/1.1702301 CrossRefGoogle Scholar
  29. 29.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1892)zbMATHGoogle Scholar
  30. 30.
    Holman, J.P.: Heat Transfer. McGraw-Hill Book Company, New York (1986)Google Scholar
  31. 31.
    Bourret, J., Tessier-Doyen, N., Guinebretiere, R., Joussein, E., Smith, D.S.: Anisotropy of thermal conductivity and elastic properties of extruded clay-based materials: evolution with thermal treatment. Appl. Clay Sci. 116–117, 150–157 (2015).  https://doi.org/10.1016/j.clay.2015.08.006 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Institut de Recherche sur les Céramiques - IRCER, UMR CNRS 7315LimogesFrance
  2. 2.Centre Technique de Matériaux Naturels de Construction - CTMNC, Ester TechnopoleLimogesFrance
  3. 3.Institut Technologique FCBA (Forêt, Cellulose, Bois - construction, Ameublement)Champs-sur-MarneFrance

Personalised recommendations